Steady-state temperature

Review. (2D and 3D heat equation) In higher dimensions, the heat equation takes the form $u_{t}=k\left(u_{x x}+u_{y y}\right)$ or $u_{t}=k\left(u_{x x}+u_{y y}+u_{z z}\right)$.
Note that $\Delta u=u_{x x}+u_{y y}+u_{z z}$ is the Laplace operator you may know from Calculus III (more below).
If temperature is steady, then $u_{t}=0$. Hence, the steady-state temperature $u(x, y)$ must satisfy the PDE $u_{x x}+u_{y y}=0$.

(Laplace equation)

$$
u_{x x}+u_{y y}=0
$$

Comment. The Laplace equation is so important that its solutions have their own name: harmonic functions. Comment. Also known as the "potential equation"; satisfied by electric/gravitational potential functions.
Recall from Calculus III (if you have taken that class) that the gradient of a scalar function $f(x, y)$ is the vector field $\boldsymbol{F}=\operatorname{grad} f=\nabla f=\left[\begin{array}{c}f_{x}(x, y) \\ f_{y}(x, y)\end{array}\right]$. One says that \boldsymbol{F} is a gradient field and f is a potential function for \boldsymbol{F} (for instance, \boldsymbol{F} could be a gravitational field with gravitational potential f).
The divergence of a vector field $\boldsymbol{G}=\left[\begin{array}{l}g(x, y) \\ h(x, y)\end{array}\right]$ is $\operatorname{div} \boldsymbol{G}=g_{x}+h_{y}$. One also writes $\operatorname{div} \boldsymbol{G}=\nabla \cdot \boldsymbol{G}$.
The gradient field of a scalar function f is divergence-free if and only if f satisfies the Laplace equation $\Delta f=0$. Other notations. $\Delta f=\operatorname{div} \operatorname{grad} f=\nabla \cdot \nabla f=\nabla^{2} f$
Boundary conditions. For steady-state temperatures profiles, it is natural to prescribe the temperature on the boundary of a region $R \subseteq \mathbb{R}^{2}$ (or $R \subseteq \mathbb{R}^{3}$ in the 3D case).
Comment. Gravitational and electrostatic potentials (not in the vacuum) satisfy the Poisson equation $u_{x x}+$ $u_{y y}=f(x, y)$, the inhomogeneous version of the Laplace equation.

(Dirichlet problem)
 $u_{x x}+u_{y y}=0$ within region R
 $u(x, y)=f(x, y)$ on boundary of R

In general. A Dirichlet problem consists of a PDE, that needs to hold within a region R, and prescribed values on the boundary of that region ("Dirichlet boundary conditions").

In our next example we solve the Dirichlet problem in the case when R is a rectangle.
Important observation. We are using homogeneous boundary conditions for three of the sides. That is actually no loss of generality.

$$
\begin{aligned}
& u_{x x}+u_{y y}=0 \quad(\mathrm{PDE}) \\
& u(x, 0)=f_{1}(x) \\
& u(x, b)=f_{2}(x) \\
& u(0, y)=f_{3}(y) \quad(\mathrm{BC}) \\
& u(a, y)=f_{4}(y)
\end{aligned}
$$

Indeed, note that in order to solve

$$
\begin{aligned}
& u_{x x}+u_{y y}=0 \\
& u(x, 0)=f_{1}(x) \\
& u(x, b)=0 \\
& u(0, y)=0 \\
& u(a, y)=0
\end{aligned}
$$

$$
u_{x x}+u_{y y}=0
$$

$$
u(x, 0)=0
$$

$$
u_{x x}+u_{y y}=0
$$

$$
\iota(x, 0)=0
$$

$$
u_{x x}+u_{y y}=0
$$

$$
u(x, 0)=0
$$

$$
u(x, b)=f_{2}(x)
$$

$$
u(x, b)=0 \quad u(x, b)=0
$$

$$
u(0, y)=0
$$

$$
u(a, y)=0
$$

$$
u(0, y)=f_{3}(y)
$$

$$
u(0, y)=0
$$

$$
u(a, y)=0
$$

$$
\begin{aligned}
& u(0, y)=0 \\
& u(a, y)=f_{4}(y)
\end{aligned}
$$

The sum of the four solutions then solves the Dirichlet problem we started with.

