The inhomogeneous heat equation

We next indicate that we can similarly solve the inhomogeneous heat equation (with inhomogeneous boundary conditions).

Comment. We indicated earlier that

$$
\begin{align*}
& u_{t}=k u_{x x} \tag{PDE}\\
& u(0, t)=a, \quad u(L, t)=b \tag{BC}\\
& u(x, 0)=f(x), \quad x \in(0, L) \tag{IC}
\end{align*}
$$

can be solved by realizing that $A x+B$ solves (PDE).
Indeed, let $v(x)=a+\frac{b-a}{L} x$ (so that $v(0)=a$ and $v(L)=b$). We then look for a solution of the form $u(x, t)=v(x)+w(x, t)$. Note that $u(x, t)$ solves $(\mathrm{PDE})+(\mathrm{BC})+(\mathrm{IC})$ if and only if $w(x, t)$ solves:

$$
\begin{align*}
& w_{t}=k w_{x x} \tag{PDE}\\
& w(0, t)=0, \quad w(L, t)=0 \tag{*}\\
& w(x, 0)=f(x)-v(x), \quad x \in(0, L) \tag{IC}
\end{align*}
$$

This the (homogeneous) heat equation that we know how to solve.
$v(x)$ is called the steady-state solution (it does not depend on time!) and $w(x, t)$ the transient solution (note that $w(x, t)$ and its partial derivatives tend to zero as $t \rightarrow \infty)$.

$$
\begin{align*}
& u_{t}=3 u_{x x}+4 x^{2} \tag{PDE}\\
& u(0, t)=1, \quad u_{x}(3, t)=-5 \tag{BC}\\
& u(x, 0)=f(x), \quad x \in(0,3)
\end{align*}
$$

Example 139. Consider the heat flow problem: $u(0, t)=1, \quad u_{x}(3, t)=-5$

Determine the steady-state solution and spell out equations characterizing the transient solution.
Solution. We look for a solution of the form $u(x, t)=v(x)+w(x, t)$, where $v(x)$ is the steady-state solution and where $w(x, t)$ is the transient solution which (together with its derivatives) tends to zero as $t \rightarrow \infty$.

- Plugging into (PDE), we get $w_{t}=3 v^{\prime \prime}+3 w_{x x}+4 x^{2}$. Letting $t \rightarrow \infty$, this becomes $0=3 v^{\prime \prime}+4 x^{2}$. Note that this also implies that $w_{t}=3 w_{x x}$.
- Plugging into (BC), we get $v(0)+w(0, t)=1$ and $v^{\prime}(3)+w_{x}(3, t)=-5$. Letting $t \rightarrow \infty$, these become $v(0)=1$ and $v^{\prime}(3)=-5$.
- Solving the ODE $0=3 v^{\prime \prime}+4 x^{2}$ with boundary conditions $v(0)=1$ and $v^{\prime}(3)=-5$, we find

$$
v(x)=\iint-\frac{4}{3} x^{2} \mathrm{~d} x \mathrm{~d} x=-\frac{1}{9} x^{4}+C_{1}+C_{2} x
$$

and therefore the steady-state solution $v(x)=-\frac{1}{9} x^{4}+1+7 x$.
On the other hand, the transient solution $w(x, t)$ is characterized as the unique solution to:

$$
\begin{array}{lr}
w_{t}=3 w_{x x} & \left(\mathrm{PDE}^{*}\right) \\
w(0, t)=0, \quad w_{x}(3, t)=0 & \left(\mathrm{BC}^{*}\right) \\
w(x, 0)=f(x)-v(x) & \left(\mathrm{IC}^{*}\right)
\end{array}
$$

This homogeneous heat flow problem can now be solved using separation of variables.

$$
u_{t}=2 u_{x x}+e^{-x / 2}
$$

Example 140. For $t \geqslant 0$ and $x \in[0,4]$, consider the heat flow problem:

$$
\begin{aligned}
u_{x}(0, t) & =3 \\
u(4, t) & =-2 \\
u(x, 0) & =f(x)
\end{aligned}
$$

Determine the steady-state solution and spell out equations characterizing the transient solution.
Solution. We look for a solution of the form $u(x, t)=v(x)+w(x, t)$, where $v(x)$ is the steady-state solution and where the transient solution $w(x, t)$ tends to zero as $t \rightarrow \infty$ (as do its derivatives).

- Plugging into (PDE), we get $w_{t}=2 v^{\prime \prime}+2 w_{x x}+e^{-x / 2}$. Letting $t \rightarrow \infty$, this becomes $0=2 v^{\prime \prime}+e^{-x / 2}$.
- Plugging into (BC), we get $w_{x}(0, t)+v^{\prime}(0)=3$ and $w(4, t)+v(4)=-2$.

Letting $t \rightarrow \infty$, these become $v^{\prime}(0)=3$ and $v(4)=-2$.

- Solving $0=2 v^{\prime \prime}+e^{-x / 2}$, we find

$$
v(x)=\iint-\frac{1}{2} e^{-x / 2} \mathrm{~d} x \mathrm{~d} x=\int e^{-x / 2} \mathrm{~d} x+C=-2 e^{-x / 2}+C x+D
$$

The boundary conditions $v^{\prime}(0)=3$ and $v(4)=-2$ imply $C=2$ and $-2 e^{-2}+8+D=-2$.
and therefore the steady-state solution $v(x)=-2 e^{-x / 2}+2 x-10+2 e^{-2}$.
On the other hand, the transient solution $w(x, t)$ is characterized as the unique solution to:

$$
\begin{aligned}
& w_{t}=2 w_{x x} \\
& w_{x}(0, t)=0, \quad w(4, t)=0 \\
& w(x, 0)=f(x)-v(x)
\end{aligned}
$$

Note. We know how to solve this homogeneous heat equation using separation of variables.

