Example 131. Find all eigenfunctions and eigenvalues of

$$y'' + \lambda y = 0, \quad y'(0) = 0, \quad y(3) = 0.$$

Solution. We distinguish three cases:

- $\lambda < 0$. The characteristic roots are $\pm r = \pm \sqrt{-\lambda}$ and the general solution to the DE is $y(x) = Ae^{rx} + Be^{-rx}$. Then y'(0) = Ar Br = 0 implies B = A, so that $y(3) = A(e^{3r} + e^{-3r})$. Since $e^{3r} + e^{-3r} > 0$, we see that y(3) = 0 only if A = 0. So there is no solution for $\lambda < 0$.
- $\lambda = 0$. The general solution to the DE is y(x) = A + Bx. Then y'(0) = 0 implies B = 0, and it follows from y(3) = A = 0 that $\lambda = 0$ is not an eigenvalue.
- $$\begin{split} \lambda > \mathbf{0}. \text{ The characteristic roots are } &\pm i\sqrt{\lambda}. \text{ So, with } r = \sqrt{\lambda}, \text{ the general solution is } y(x) = A\cos(rx) + \\ B\sin(rx). \ y'(0) = Br = 0 \text{ implies } B = 0. \text{ Then } y(3) = A\cos(3r) = 0. \text{ Note that } \cos(3r) = 0 \text{ is true if and only if } 3r = \frac{\pi}{2} + n\pi = \frac{(2n+1)\pi}{2} \text{ for some integer } n. \text{ Since } r > 0, \text{ we have } n \ge 0. \text{ Correspondingly, } \\ \lambda = r^2 = \left(\frac{(2n+1)\pi}{6}\right)^2 \text{ and } y(x) = \cos\left(\frac{(2n+1)\pi}{6}x\right). \end{split}$$

In summary, we have that the eigenvalues are $\lambda = \left(\frac{(2n+1)\pi}{6}\right)^2$, with n = 0, 1, 2, ... with corresponding eigenfunctions $y(x) = \cos\left(\frac{(2n+1)\pi}{6}x\right)$.

Partial differential equations

The heat equation

We wish to describe one-dimensional heat flow.

Comment. If this sounds very specialized, it might help to know that the heat equation is also used, for instance, in probability (Brownian motion), financial math (Black-Scholes), or chemical processes (diffusion equation).

Let u(x,t) describe the temperature at time t at position x.

If we model a heated rod of length L, then $x \in [0, L]$.

Notation. u(x, t) depends on two variables. When taking derivatives, we will use the notations $u_t = \frac{\partial}{\partial t}u$ and $u_{xx} = \frac{\partial^2}{\partial x^2}u$ for first and higher derivatives.

Experience tells us that heat flows from warmer to cooler areas and has an averaging effect.

Make a sketch of some temperature profile u(x,t) for fixed t.

As t increases, we expect maxima (where $u_{xx} < 0$) of that profile to flatten out (which means that $u_t < 0$); similarly, minima (where $u_{xx} > 0$) should go up (meaning that $u_t > 0$). The simplest relationship between u_t and u_{xx} which conforms with our expectation is $u_t = k u_{xx}$, with k > 0.

(heat equation)

$u_t = k u_{xx}$

Note that the heat equation is a linear and homogeneous partial differential equation.

In particular, the principle of superposition holds: if u_1 and u_2 solve the heat equation, then so does $c_1u_1 + c_2u_2$.

Higher dimensions. In higher dimensions, the heat equation takes the form $u_t = k(u_{xx} + u_{yy})$ or $u_t = k(u_{xx} + u_{yy} + u_{zz})$. Note that $\Delta u = u_{xx} + u_{yy} + u_{zz}$ is the Laplace operator you may know from Calculus III. The Laplacian Δu is also often written as $\Delta u = \nabla^2 u$. The operator $\nabla = (\partial / \partial x, \partial / \partial y)$ is pronounced "nabla" (Greek for a certain harp) or "del" (Persian for heart), and ∇^2 is short for the inner product $\nabla \cdot \nabla$. **Example 132.** Note that u(x, t) = ax + b solves the heat equation.

Example 133. To get a feeling, let us find some other solutions to $u_t = u_{xx}$ (for starters, k = 1).

- For instance, $u(x,t) = e^t e^x$ is a solution. [Not a very interesting one for modeling heat flow because it increases exponentially in time.]
- ... to be continued ... Can you find further solutions?

Let us think about what is needed to describe a unique solution of the heat equation.

• Initial condition at t = 0: u(x, 0) = f(x) (IC)

This specifies an initial temperature distribution at time t = 0.

• Boundary condition at x = 0 and x = L: (BC)

Assuming that heat only enters/exits at the boundary (think of our rod as being insulated, except possibly at the two ends), we need some condition on the temperature at the ends. For instance:

 \circ u(0,t) = A, u(L,t) = B

This models a rod where one end is kept at temperature A and the other end at temperature B.

$$\circ \quad u_x(0,t) = u_x(L,t) = 0$$

This models a rod whose ends are insulated as well.

Under such assumptions, our physical intuition suggests that there should be a unique solution.

Important comment. We can always transform the case u(0,t) = A, u(L,t) = B into u(0,t) = u(L,t) = 0 by using the fact that u(t,x) = ax + b solves $u_t = ku_{xx}$. Can you spell this out?