Example 131. Find all eigenfunctions and eigenvalues of

$$
y^{\prime \prime}+\lambda y=0, \quad y^{\prime}(0)=0, \quad y(3)=0
$$

Solution. We distinguish three cases:
$\boldsymbol{\lambda}<\mathbf{0}$. The characteristic roots are $\pm r= \pm \sqrt{-\lambda}$ and the general solution to the DE is $y(x)=A e^{r x}+$ $B e^{-r x}$. Then $y^{\prime}(0)=A r-B r=0$ implies $B=A$, so that $y(3)=A\left(e^{3 r}+e^{-3 r}\right)$. Since $e^{3 r}+e^{-3 r}>0$, we see that $y(3)=0$ only if $A=0$. So there is no solution for $\lambda<0$.
$\boldsymbol{\lambda}=\mathbf{0}$. The general solution to the DE is $y(x)=A+B x$. Then $y^{\prime}(0)=0$ implies $B=0$, and it follows from $y(3)=A=0$ that $\lambda=0$ is not an eigenvalue.
$\boldsymbol{\lambda}>\mathbf{0}$. The characteristic roots are $\pm i \sqrt{\lambda}$. So, with $r=\sqrt{\lambda}$, the general solution is $y(x)=A \cos (r x)+$ $B \sin (r x) . y^{\prime}(0)=B r=0$ implies $B=0$. Then $y(3)=A \cos (3 r)=0$. Note that $\cos (3 r)=0$ is true if and only if $3 r=\frac{\pi}{2}+n \pi=\frac{(2 n+1) \pi}{2}$ for some integer n. Since $r>0$, we have $n \geqslant 0$. Correspondingly, $\lambda=r^{2}=\left(\frac{(2 n+1) \pi}{6}\right)^{2}$ and $y(x)=\cos \left(\frac{(2 n+1) \pi}{6} x\right)$.

In summary, we have that the eigenvalues are $\lambda=\left(\frac{(2 n+1) \pi}{6}\right)^{2}$, with $n=0,1,2, \ldots$ with corresponding eigenfunctions $y(x)=\cos \left(\frac{(2 n+1) \pi}{6} x\right)$.

Partial differential equations

The heat equation

We wish to describe one-dimensional heat flow.
Comment. If this sounds very specialized, it might help to know that the heat equation is also used, for instance, in probability (Brownian motion), financial math (Black-Scholes), or chemical processes (diffusion equation).
Let $u(x, t)$ describe the temperature at time t at position x.
If we model a heated rod of length L, then $x \in[0, L]$.
$\underset{\partial^{2}}{\text { Notation. }} u(x, t)$ depends on two variables. When taking derivatives, we will use the notations $u_{t}=\frac{\partial}{\partial t} u$ and $u_{x x}=\frac{\partial^{2}}{\partial x^{2}} u$ for first and higher derivatives.
Experience tells us that heat flows from warmer to cooler areas and has an averaging effect.
Make a sketch of some temperature profile $u(x, t)$ for fixed t.
As t increases, we expect maxima (where $u_{x x}<0$) of that profile to flatten out (which means that $u_{t}<0$); similarly, minima (where $u_{x x}>0$) should go up (meaning that $u_{t}>0$). The simplest relationship between u_{t} and $u_{x x}$ which conforms with our expectation is $u_{t}=k u_{x x}$, with $k>0$.
(heat equation)

$$
u_{t}=k u_{x x}
$$

Note that the heat equation is a linear and homogeneous partial differential equation.
In particular, the principle of superposition holds: if u_{1} and u_{2} solve the heat equation, then so does $c_{1} u_{1}+c_{2} u_{2}$.
Higher dimensions. In higher dimensions, the heat equation takes the form $u_{t}=k\left(u_{x x}+u_{y y}\right)$ or $u_{t}=$ $k\left(u_{x x}+u_{y y}+u_{z z}\right)$. Note that $\Delta u=u_{x x}+u_{y y}+u_{z z}$ is the Laplace operator you may know from Calculus III. The Laplacian Δu is also often written as $\Delta u=\nabla^{2} u$. The operator $\nabla=(\partial / \partial x, \partial / \partial y)$ is pronounced "nabla" (Greek for a certain harp) or "del" (Persian for heart), and ∇^{2} is short for the inner product $\nabla \cdot \nabla$.

Example 132. Note that $u(x, t)=a x+b$ solves the heat equation.
Example 133. To get a feeling, let us find some other solutions to $u_{t}=u_{x x}$ (for starters, $k=1$).

- For instance, $u(x, t)=e^{t} e^{x}$ is a solution.
[Not a very interesting one for modeling heat flow because it increases exponentially in time.]
- ... to be continued ...

Can you find further solutions?

Let us think about what is needed to describe a unique solution of the heat equation.

- Initial condition at $t=0: \quad u(x, 0)=f(x)$

This specifies an initial temperature distribution at time $t=0$.

- Boundary condition at $x=0$ and $x=L$:

Assuming that heat only enters/exits at the boundary (think of our rod as being insulated, except possibly at the two ends), we need some condition on the temperature at the ends. For instance:

- $u(0, t)=A, u(L, t)=B$

This models a rod where one end is kept at temperature A and the other end at temperature B.

- $u_{x}(0, t)=u_{x}(L, t)=0$

This models a rod whose ends are insulated as well.
Under such assumptions, our physical intuition suggests that there should be a unique solution.
Important comment. We can always transform the case $u(0, t)=A, u(L, t)=B$ into $u(0, t)=u(L, t)=0$ by using the fact that $u(t, x)=a x+b$ solves $u_{t}=k u_{x x}$. Can you spell this out?

