
Sketch of Lecture 30 Wed, 4/5/2023

Example 131. Find all eigenfunctions and eigenvalues of

y 00+�y=0; y 0(0)=0; y(3)= 0:

Solution. We distinguish three cases:

�< 0. The characteristic roots are �r = � ¡�
p

and the general solution to the DE is y(x) = Aerx +

Be¡rx. Then y 0(0)=Ar¡Br=0 implies B=A, so that y(3)=A(e3r+ e¡3r). Since e3r+ e¡3r>0,
we see that y(3)=0 only if A=0. So there is no solution for �< 0.

�=0. The general solution to the DE is y(x)=A+Bx. Then y 0(0)=0 implies B=0, and it follows from
y(3)=A=0 that �=0 is not an eigenvalue.

�> 0. The characteristic roots are �i �
p

. So, with r = �
p

, the general solution is y(x) = A cos(rx) +
B sin(rx). y 0(0)=Br=0 implies B=0. Then y(3)=A cos(3r) = 0. Note that cos(3r) = 0 is true if
and only if 3r= �

2
+ n� =

(2n+1)�

2
for some integer n. Since r > 0, we have n> 0. Correspondingly,

�= r2=
�
(2n+1)�

6

�2
and y(x)= cos

�
(2n+1)�

6
x
�
.

In summary, we have that the eigenvalues are � =
�
(2n+1)�

6

�
2
, with n = 0; 1; 2; ::: with corresponding

eigenfunctions y(x)= cos
�
(2n+1)�

6
x
�
.

Partial differential equations

The heat equation

We wish to describe one-dimensional heat flow.
Comment. If this sounds very specialized, it might help to know that the heat equation is also used, for instance,
in probability (Brownian motion), financial math (Black-Scholes), or chemical processes (diffusion equation).

Let u(x; t) describe the temperature at time t at position x.

If we model a heated rod of length L, then x2 [0; L].
Notation. u(x; t) depends on two variables. When taking derivatives, we will use the notations ut=

@

@t
u and

uxx=
@2

@x2
u for first and higher derivatives.

Experience tells us that heat flows from warmer to cooler areas and has an averaging effect.
Make a sketch of some temperature profile u(x; t) for fixed t.

As t increases, we expect maxima (where uxx < 0) of that profile to flatten out (which means
that ut<0); similarly, minima (where uxx>0) should go up (meaning that ut>0). The simplest
relationship between ut and uxx which conforms with our expectation is ut= kuxx, with k > 0.

(heat equation)

ut= kuxx

Note that the heat equation is a linear and homogeneous partial differential equation.
In particular, the principle of superposition holds: if u1 and u2 solve the heat equation, then so does c1u1+ c2u2.

Higher dimensions. In higher dimensions, the heat equation takes the form ut = k(uxx + uyy) or ut =
k(uxx+uyy+uzz). Note that �u=uxx+uyy+uzz is the Laplace operator you may know from Calculus III.

The Laplacian �u is also often written as �u=r2u. The operator r= (@/@x; @/@y) is pronounced �nabla�
(Greek for a certain harp) or �del� (Persian for heart), and r2 is short for the inner product r �r.
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Example 132. Note that u(x; t)= ax+ b solves the heat equation.

Example 133. To get a feeling, let us find some other solutions to ut=uxx (for starters, k=1).

� For instance, u(x; t)= etex is a solution.
[Not a very interesting one for modeling heat flow because it increases exponentially in time.]

� ::: to be continued :::
Can you find further solutions?

Let us think about what is needed to describe a unique solution of the heat equation.

� Initial condition at t=0: u(x; 0)= f(x) (IC)
This specifies an initial temperature distribution at time t=0.

� Boundary condition at x=0 and x=L: (BC)
Assuming that heat only enters/exits at the boundary (think of our rod as being insulated, except possibly
at the two ends), we need some condition on the temperature at the ends. For instance:

� u(0; t)=A, u(L; t)=B

This models a rod where one end is kept at temperatureA and the other end at temperatureB.

� ux(0; t)= ux(L; t)= 0

This models a rod whose ends are insulated as well.

Under such assumptions, our physical intuition suggests that there should be a unique solution.
Important comment. We can always transform the case u(0; t)=A, u(L; t)=B into u(0; t)=u(L; t)= 0 by
using the fact that u(t; x)= ax+ b solves ut= kuxx. Can you spell this out?
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