## Boundary value problems

Example 127. The IVP (initial value problem) $y^{\prime \prime}+4 y=0, y(0)=0, y^{\prime}(0)=0$ has the unique solution $y(x)=0$.

Initial value problems are often used when the problem depends on time. Then, $y(0)$ and $y^{\prime}(0)$ describe the initial configuration at $t=0$.
For problems which instead depend on spatial variables, such as position, it may be natural to specify values at positions on the boundary (for instance, if $y(x)$ describes the steady-state temperature of a rod at position $x$, we might know the temperature at the two end points).
The next example illustrates that such a boundary value problem (BVP) may or may not have a unique solution.

Example 128. Verify the following claims.
(a) The BVP $y^{\prime \prime}+4 y=0, y(0)=0, y(1)=0$ has the unique solution $y(x)=0$.
(b) The BVP $y^{\prime \prime}+\pi^{2} y=0, y(0)=0, y(1)=0$ is solved by $y(x)=B \sin (\pi x)$ for any value $B$.

Solution.
(a) We know that the general solution to the DE is $y(x)=A \cos (2 x)+B \sin (2 x)$. The boundary conditions imply $y(0)=A \stackrel{!}{=} 0$ and, using that $A=0, y(1)=B \sin (2) \stackrel{!}{=} 0$ shows that $B=0$ as well.
(b) This time, the general solution to the DE is $y(x)=A \cos (\pi x)+B \sin (\pi x)$. The boundary conditions imply $y(0)=A \stackrel{!}{=} 0$ and, using that $A=0, y(1)=B \sin (\pi) \stackrel{!}{=} 0$. This second condition is true for every $B$.

It is therefore natural to ask: for which $\lambda$ does the BVP $y^{\prime \prime}+\lambda y=0, y(0)=0, y(L)=0$ have nonzero solutions? (We assume that $L>0$.)
Such solutions are called eigenfunctions and $\lambda$ is the corresponding eigenvalue.
Remark. Compare that to our previous use of the term eigenvalue: given a matrix $A$, we asked: for which $\lambda$ does $A v-\lambda \boldsymbol{v}=0$ have nonzero solutions $\boldsymbol{v}$ ? Such solutions were called eigenvectors and $\lambda$ was the corresponding eigenvalue.

Example 129. Find all eigenfunctions and eigenvalues of $y^{\prime \prime}+\lambda y=0, y(0)=0, y(L)=0$.
Such a problem is called an eigenvalue problem.
Solution. The solutions of the DE look different in the cases $\lambda<0, \lambda=0, \lambda>0$, so we consider them individually.
$\boldsymbol{\lambda}=\mathbf{0}$. Then $y(x)=A x+B$ and $y(0)=y(L)=0$ implies that $y(x)=0$. No eigenfunction here.
$\boldsymbol{\lambda}<\mathbf{0}$. The roots of the characteristic polynomial are $\pm \sqrt{-\lambda}$. Writing $\rho=\sqrt{-\lambda}$, the general solution therefore is $y(x)=A e^{\rho x}+B e^{-\rho x} . y(0)=A+B \stackrel{!}{=} 0$ implies $B=-A$. Using that, we get $y(L)=A\left(e^{\rho L}-e^{-\rho L}\right) \stackrel{!}{=} 0$. For eigenfunctions we need $A \neq 0$, so $e^{\rho L}=e^{-\rho L}$ which implies $\rho L=-\rho L$. This cannot happen since $\rho \neq 0$ and $L \neq 0$. Again, no eigenfunctions in this case.
$\boldsymbol{\lambda}>\mathbf{0}$. The roots of the characteristic polynomial are $\pm i \sqrt{\lambda}$. Writing $\rho=\sqrt{\lambda}$, the general solution thus is $y(x)=A \cos (\rho x)+B \sin (\rho x) . y(0)=A \stackrel{!}{=} 0$. Using that, $y(L)=B \sin (\rho L) \stackrel{!}{=} 0$. Since $B \neq 0$ for eigenfunctions, we need $\sin (\rho L)=0$. This happens if $\rho L=n \pi$ for $n=1,2,3, \ldots$ (since $\rho$ and $L$ are both positive, $n$ must be positive as well). Equivalently, $\rho=\frac{n \pi}{L}$. Consequently, we find the eigenfunctions $y_{n}(x)=\sin \frac{n \pi x}{L}, n=1,2,3, \ldots$, with eigenvalue $\lambda=\left(\frac{n \pi}{L}\right)^{2}$.

Example 130. Suppose that a rod of length $L$ is compressed by a force $P$ (with ends being pinned [not clamped] down). We model the shape of the rod by a function $y(x)$ on some interval $[0, L]$. The theory of elasticity predicts that, under certain simplifying assumptions, $y$ should satisfy $E I y^{\prime \prime}+P y=0, y(0)=0, y(L)=0$.
Here, $E I$ is a constant modeling the inflexibility of the rod ( $E$, known as Young's modulus, depends on the material, and $I$ depends on the shape of cross-sections (it is the area moment of inertia)).
In other words, $y^{\prime \prime}+\lambda y=0, y(0)=0, y(L)=0$, with $\lambda=\frac{P}{E I}$.
The fact that there is no nonzero solution unless $\lambda=\left(\frac{\pi n}{L}\right)^{2}$ for some $n=1,2,3, \ldots$, means that buckling can only occur if $P=\left(\frac{\pi n}{L}\right)^{2} E I$. In particular, no buckling occurs for forces less than $\frac{\pi^{2} E I}{L^{2}}$. This is known as the critical load (or Euler load) of the rod.
Comment. This is a very simplified model. In particular, it assumes that the deflections are small. (Technically, the buckled rod in our model is longer than $L$; of course, that's not the case in practice.)

```
https://en.wikipedia.org/wiki/Euler%27s_critical_load
```

