Boundary value problems

Example 127. The **IVP** (initial value problem) y'' + 4y = 0, y(0) = 0, y'(0) = 0 has the unique solution y(x) = 0.

Initial value problems are often used when the problem depends on time. Then, y(0) and y'(0) describe the initial configuration at t = 0.

For problems which instead depend on spatial variables, such as position, it may be natural to specify values at positions on the boundary (for instance, if y(x) describes the steady-state temperature of a rod at position x, we might know the temperature at the two end points).

The next example illustrates that such a boundary value problem (BVP) may or may not have a unique solution.

Example 128. Verify the following claims.

- (a) The BVP y'' + 4y = 0, y(0) = 0, y(1) = 0 has the unique solution y(x) = 0.
- (b) The BVP $y'' + \pi^2 y = 0$, y(0) = 0, y(1) = 0 is solved by $y(x) = B \sin(\pi x)$ for any value B.

Solution.

- (a) We know that the general solution to the DE is $y(x) = A\cos(2x) + B\sin(2x)$. The boundary conditions imply $y(0) = A \stackrel{!}{=} 0$ and, using that A = 0, $y(1) = B\sin(2) \stackrel{!}{=} 0$ shows that B = 0 as well.
- (b) This time, the general solution to the DE is $y(x) = A \cos(\pi x) + B \sin(\pi x)$. The boundary conditions imply $y(0) = A \stackrel{!}{=} 0$ and, using that A = 0, $y(1) = B \sin(\pi) \stackrel{!}{=} 0$. This second condition is true for every B.

It is therefore natural to ask: for which λ does the BVP $y'' + \lambda y = 0$, y(0) = 0, y(L) = 0 have nonzero solutions? (We assume that L > 0.)

Such solutions are called **eigenfunctions** and λ is the corresponding **eigenvalue**.

Remark. Compare that to our previous use of the term eigenvalue: given a matrix A, we asked: for which λ does $Av - \lambda v = 0$ have nonzero solutions v? Such solutions were called eigenvectors and λ was the corresponding eigenvalue.

Example 129. Find all eigenfunctions and eigenvalues of $y'' + \lambda y = 0$, y(0) = 0, y(L) = 0. Such a problem is called an eigenvalue problem.

Solution. The solutions of the DE look different in the cases $\lambda < 0$, $\lambda = 0$, $\lambda > 0$, so we consider them individually.

- $\lambda = 0$. Then y(x) = Ax + B and y(0) = y(L) = 0 implies that y(x) = 0. No eigenfunction here.
- $\lambda < 0$. The roots of the characteristic polynomial are $\pm \sqrt{-\lambda}$. Writing $\rho = \sqrt{-\lambda}$, the general solution therefore is $y(x) = Ae^{\rho x} + Be^{-\rho x}$. $y(0) = A + B \stackrel{!}{=} 0$ implies B = -A. Using that, we get $y(L) = A(e^{\rho L} e^{-\rho L}) \stackrel{!}{=} 0$. For eigenfunctions we need $A \neq 0$, so $e^{\rho L} = e^{-\rho L}$ which implies $\rho L = -\rho L$. This cannot happen since $\rho \neq 0$ and $L \neq 0$. Again, no eigenfunctions in this case.
- $\lambda > 0$. The roots of the characteristic polynomial are $\pm i\sqrt{\lambda}$. Writing $\rho = \sqrt{\lambda}$, the general solution thus is $y(x) = A \cos(\rho x) + B \sin(\rho x)$. $y(0) = A \stackrel{!}{=} 0$. Using that, $y(L) = B \sin(\rho L) \stackrel{!}{=} 0$. Since $B \neq 0$ for eigenfunctions, we need $\sin(\rho L) = 0$. This happens if $\rho L = n\pi$ for n = 1, 2, 3, ... (since ρ and L are both positive, n must be positive as well). Equivalently, $\rho = \frac{n\pi}{L}$. Consequently, we find the eigenfunctions $y_n(x) = \sin\frac{n\pi x}{L}$, n = 1, 2, 3, ..., with eigenvalue $\lambda = (\frac{n\pi}{L})^2$.

Example 130. Suppose that a rod of length L is compressed by a force P (with ends being pinned [not clamped] down). We model the shape of the rod by a function y(x) on some interval [0, L]. The theory of elasticity predicts that, under certain simplifying assumptions, y should satisfy EIy'' + Py = 0, y(0) = 0, y(L) = 0.

Here, EI is a constant modeling the inflexibility of the rod (E, known as Young's modulus, depends on the material, and I depends on the shape of cross-sections (it is the area moment of inertia)).

In other words, $y^{\prime\prime}+\lambda y\!=\!0,\;y(0)\!=\!0,\;y(L)\!=\!0,$ with $\lambda\!=\!\frac{P}{EI}$

The fact that there is no nonzero solution unless $\lambda = \left(\frac{\pi n}{L}\right)^2$ for some n = 1, 2, 3, ..., means that buckling can only occur if $P = \left(\frac{\pi n}{L}\right)^2 EI$. In particular, no buckling occurs for forces less than $\frac{\pi^2 EI}{L^2}$. This is known as the critical load (or Euler load) of the rod.

Comment. This is a very simplified model. In particular, it assumes that the deflections are small. (Technically, the buckled rod in our model is longer than L; of course, that's not the case in practice.)

https://en.wikipedia.org/wiki/Euler%27s_critical_load