Sketch of Lecture 27 Fri, 3/24/2023

\ Fourier cosine series and Fourier sine series \

Suppose we have a function f(t) which is defined on a finite interval [0, L]. Depending on the
kind of application, we can extend f(t) to a periodic function in three natural ways; in each case,
we can then compute a Fourier series for f(t) (which will agree with f(¢) on [0, L]).

Comment. Here, we do not worry about the definition of f(¢) at specific individual points like t=0 and t =L,
or at jump discontinuities. Recall that, at a discontinuity, a Fourier series takes the average value.

(a) We can extend f(t) to an L-periodic function.

In that case, we obtain the Fourier series f(t) + Z (ancos< mnt ) + by, si]@(@)).

(b) We can extend f(t¢) to an even 2L-periodic function.

~ [e'e)
™t
In that case, we obtain the Fourier cosine series f(t) 70 Z cos( )

(c) We can extend f(t) to an odd 2L-periodic function.

™t
In that case, we obtain the Fourier sine series f(t) Z nsm( )

Example 120. Consider the function f(t) =4 —t2, defined for ¢ € [0, 2].
(a) Sketch the 2-periodic extension of f().
(b) Sketch the 4-periodic even extension of f(t).
(c) Sketch the 4-periodic odd extension of f(t).

Solution. The 2-periodic extension as well as the 4-periodic even extension:

VY

The 4-periodic odd extension:

VALV
AN
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Example 121. As in the previous example, consider the function f(t)=4—t2, defined for t € [0, 2]

(a) Let F'(t) be the Fourier series of f(t) (meaning the 2-periodic extension of f(t)). Deter-

mine F'(2), F(g) and F(—%)

(b) Let GG(t) be the Fourier cosine series of f(t). Determine G(2), (g) and G(—%).

(c) Let H(t) be the Fourier cosine series of f(t). Determine H(2), H(g) and H(—%)

Solution.

(a) Note that the extension of f(t) has discontinuities at ..., —2,0,2,4, ... (see plot in previous example) and
recall that the Fourier series takes average values at these discontinuities:

F2)=5(F(27)+ F@21)=5(0+4)=2

(E) (o) ()=
F()=r(32)o(2)
(b) G(2)= f(2) =0 (see plot!)

[note that G(21) =G (21T —4) =G(—21) =G(27) where we used that G is even in the last step; in fact,
we can show like this that the Fourier cosine series of a continuous function is always continuous]

o(3)=e(3-1)=0(-3)=1(2)="
o(-3)=r(2)="%
(c) H(2)=%(f(27) = f(27)) =0 (see plot!)

[note that H(27) = H(2t —4) = H(—21) = —H(27) where we used that H is odd in the last step; in
fact, we can show like this that the Fourier sine series of a continuous function is always 0 at the jumps]

A(3)- (2= 0)-n(-3)=~1(2) -3
()10~

\ Fourier series and linear differential equations

In the following examples, we consider inhomogeneous linear DEs p(D)y = F'(t) where F(t) is a

periodic function that can be expressed as a Fourier series. We first review the notion of resonance

(and how to predict it) and then solve such DEs.

Context. Recall that the inhomogeneous DE my’’ + ky = F(t) describes, for instance, the motion of a mass
m on a spring with spring constant k under the influence of an external force F'(t).

Example 122. Consider the linear DE my” + ky = cos(wt). For which (external) frequencies

w > 0 does resonance occur?

Solution. The roots of p(D) =m D? + k are +i/k /m. Correspondingly, the solutions of the homogeneous
equation my” + ky =0 are combinations of cos(wot) and sin(wot), where wg=+/k /m (wo is called the natural
frequency of the DE). Resonance occurs in the case w =wq (overlapping roots).

Review. If w # wq, then there is particular solution of the form y,(t) = A cos(wt) + B sin(wt) (for specific
values of A and B). The general solution is y(t) = A cos(wt) + B sin(wt) + Ccos(wot) + Casin(wot), which
is a bounded function of t. In contrast, if w = wg, then general solution is y(t) = (C7 + At)cos(wot) +
(C2 4+ Bt)sin(wot) and this function is unbounded.

Comment. The inhomogeneous equation my’’ + ky = F(t) describes the motion of a mass m on a spring with
spring constant k under the influence of an external force F'(t).

Armin Straub 50
straub@southalabama.edu



cos(nwt)

[o.@]
Example 123. A mass-spring system is described by the DE 2y + 32y = Z n2+1

n=1
For which w does resonance occur?

Solution. The roots of p(D) = 2D? + 32 are +4i, so that that the natural frequency is 4. Resonance
therefore occurs if 4 equals nw for some n € {1, 2, 3, ...}. Equivalently, resonance occurs if w=4/n for some

ne{1,2,3, ..}

oo
Example 124. A mass-spring system is described by the DE my"” 4+ y = Z %sin(%).
n=1

For which m does resonance occur?

Solution. The roots of p(D) =mD? + 1 are i /./m, so that the natural frequency is 1 /./m. Resonance

therefore occurs if 1 /\/m =n /3 for some n € {1,2,3,...}. Equivalently, resonance occurs if m =9 /n? for some
nef{1,2,3,..}.
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