
Sketch of Lecture 1 Wed, 8/21/2024

A crash course in linear algebra

Example 1. A typical 2� 3 matrix is

�
1 2 3
4 5 6

�
.

It is composed of column vectors like
�
2
5

�
and row vectors like [ 1 2 3 ].

Matrices (and vectors) of the same dimensions can be added and multiplied by a scalar:

For instance,
�
1 2 3
4 5 6

�
+

�
1 0 2
2 3 ¡1

�
=

�
2 2 5
6 8 5

�
or 3 �

�
1 2 3
4 5 6

�
=

�
3 6 9
12 15 18

�
.

Remark. More generally, a vector space is an abstraction of a collection of objects that can be
added and scaled: numbers, lists of numbers (like the above row and column vectors), arrays of
numbers (like the above matrices), arrows, functions, polynomials, differential operators, solutions
to homogeneous linear differential equations, :::

Example 2. The transpose AT of A is obtained by interchanging roles of rows and columns.

For instance.
�
1 2 3
4 5 6

�T
=

24 1 4
2 5
3 6

35

Example 3. Matrices of appropriate dimensions can also be multiplied.

This is based on the multiplication [ a b c ]

24 x
y
z

35= ax+ by+ cz of row and column vectors.

For instance.
�
1 ¡1 1
2 1 3

�24 1 0
¡1 1
2 ¡2

35=�
4 ¡3
7 ¡5

�
In general, we can multiply a m�n matrix A with a n� r matrix B to get a m� r matrix AB.

Its entry in row i and column j is defined to be (AB)ij=(row i of A)
24 column

j
of B

35.
Comment. One way to think about the multiplication Ax is that the resulting vector is a linear combination of
the columns of A with coefficients from x. Similarly, we can think of xTA as a combination of the rows of A.

Some nice properties of matrix multiplication are:
� There is an n�n identity matrix I (all entries are zero except the diagonal ones which are 1). It satisfies

AI =A and IA=A.

� The associative law A(BC)= (AB)C holds. Hence, we can write ABC without ambiguity.

� The distributive laws including A(B+C)=AB+AC hold.

Example 4.
�
2 0
0 1

��
1 2
3 4

�
=/
�
1 2
3 4

��
2 0
0 1

�
, so we have no commutative law.

Example 5.
�
3 1
2 1

��
1 ¡1
¡2 3

�
=
�
1 0
0 1

�
On the RHS we have the identity matrix, usually denoted I or I2 (since it's the 2� 2 identity matrix here).

Hence, the two matrices on the left are inverses of each other:
�
3 1
2 1

�¡1
=

�
1 ¡1
¡2 3

�
,
�

1 ¡1
¡2 3

�¡1
=

�
3 1
2 1

�
.
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The inverse A¡1 of a matrix A is characterized by A¡1A= I and AA¡1= I.

Example 6. The following formula immediately gives us the inverse of a 2�2 matrix (if it exists).
It is worth remembering!�

a b
c d

�¡1
= 1
ad¡ bc

�
d ¡b
¡c a

�
provided that ad¡ bc=/ 0

Let's check that! 1

ad¡ bc

�
d ¡b
¡c a

��
a b
c d

�
=

1

ad¡ bc

�
ad¡ bc 0

0 ¡cb+ ad

�
= I2

In particular, a 2� 2 matrix

�
a b
c d

�
is invertible () ad¡ bc=/ 0.

Recall that this is the determinant: det
��

a b
c d

��
= ad¡ bc.

det(A)= 0 () A is not invertible

Example 7. The system 7x1¡ 2x2 = 3
2x1+x2 = 4 is equivalent to

�
7 ¡2
2 1

��
x1
x2

�
=
�
3
4

�
. Solve it.

Solution. Multiplying (from the left!) by
�
7 ¡2
2 1

�¡1
=

1

11

�
1 2
¡2 7

�
produces

�
x1
x2

�
=

1

11

�
1 2
¡2 7

��
3
4

�
=

�
1
2

�
,

which gives the solution of the original equations.

Example 8. (homework) Solve the system x1+2x2 = 1
3x1+4x2 = ¡ 1 (using a matrix inverse).

Solution. The equations are equivalent to
�
1 2
3 4

��
x1
x2

�
=

�
1
¡1

�
.

Multiplying by
�
1 2
3 4

�¡1
=¡1

2

�
4 ¡2
¡3 1

�
produces

�
x1
x2

�
=¡1

2

�
4 ¡2
¡3 1

��
1
¡1

�
=¡1

2

�
6
¡4

�
=

�
¡3
2

�
.

Example 9. (homework) Solve the system x1+2x2 = 1
3x1+4x2 = 2 (using a matrix inverse).

Solution. The equations are equivalent to
�
1 2
3 4

��
x1
x2

�
=

�
1
2

�
.

Multiplying by
�
1 2
3 4

�¡1
=¡1

2

�
4 ¡2
¡3 1

�
produces

�
x1
x2

�
=¡1

2

�
4 ¡2
¡3 1

��
1
2

�
=¡1

2

�
0
¡1

�
=

�
0
1/2

�
.

Comment. In hindsight, can you see this solution by staring at the equations?
Comment. Note how we can reuse the matrix inverse from the previous example.

The determinant of A, written as det(A) or jAj, is a number with the property that:

det(A)=/ 0 () A is invertible
() Ax= b has a (unique) solution x for all b
() Ax=0 is only solved by x=0

Example 10. det
��

a b
c d

��
= ad¡ bc, which appeared in the formula for the inverse.
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Sketch of Lecture 2 Fri, 8/23/2024

Example 11. (review) [ 1 2 3 ]

24 1
2
3

35= [ 14 ] whereas

24 1
2
3

35[ 1 2 3 ]=

24 1 2 3
2 4 6
3 6 9

35.

Review: Examples of differential equations we can solve

Let's start with one of the simplest (and most fundamental) differential equations (DE). It is first-
order (only a first derivative) and linear with constant coefficients.

Example 12. Solve y 0=3y.
Solution. y(x)=Ce3x

Check. Indeed, if y(x)=Ce3x, then y 0(x)= 3Ce3x=3y(x).
Comment. Recall we can always easily check whether a function solves a differential equation. This means that
(although you might be unfamiliar with the techniques for solving) you can use computer algebra systems like
Sage to solve differential equations without trust issues.

To describe a unique solution, additional constraints need to be imposed.

Example 13. Solve the initial value problem (IVP) y 0=3y, y(0)= 5.
Solution. This has the unique solution y(x)= 5e3x.

The following is a nonlinear differential equation. In general, such equations are much more
complicated than linear ones. We can solve this particular one because it is separable.

Example 14. Solve y 0=xy2.

Solution. This DE is separable: 1

y2
dy= xdx. Integrating, we find ¡1

y
=
1

2
x2+C.

Hence, y=¡ 1
1
2
x2+C

=
2

D¡ x2
.

[Here, D=¡2C but that relationship doesn't matter; it only matters that the solution has a free parameter.]
Note. Note that we did not find the solution y=0 (lost when dividing by y2). It is called a singular solution
because it is not part of the general solution (the one-parameter family found above). [Although, we can obtain
it from the general solution by letting D!1.]
Check. Compute y0 and verify that the DE is indeed satisfied.
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Review: Linear DEs

Linear DEs of order n are those that can be written in the form

y(n)+Pn¡1(x) y(n¡1)+ :::+P1(x)y 0+P0(x)y= f(x):

The corresponding homogeneous linear DE is the DE

y(n)+Pn¡1(x) y(n¡1)+ :::+P1(x)y 0+P0(x)y=0;

and it plays an important role in solving the original linear DE.

Important. Note that a linear DE is homogeneous if and only if the zero function y(x)= 0 is a solution.

In terms of D= d

dx
, the original DE becomes: Ly= f(x) where L is the differential operator

L=Dn+Pn¡1(x)Dn¡1+ :::+P1(x)D+P0(x):

The corresponding homogeneous linear DE is Ly=0.

Linear DEs have a lot of structure that makes it possible to understand them more deeply. Most
notably, their general solution always has the following structure:

(general solution of linear DEs) For a linear DE Ly= f(x) of order n, the general solution
always takes the form

y(x)= yp(x)+C1y1(x)+ :::+Cn yn(x);

where yp is any single solution (called a particular solution) and y1; y2; :::; yn are solutions to
the corresponding homogeneous linear DE Ly=0.

Comment. If the linear DE is already homogeneous, then the zero function y(x) = 0 is a solution and we can
use yp=0. In that case, the general solution is of the form y(x)=C1y1+C2y2+ ���+Cnyn.

Why? The key to this is that the differential operator L is linear, meaning that, for any functions f1(x); f2(x)
and any constants c1; c2, we have

L(c1f1(x)+ c2f2(x))= c1L(f1(x))+ c2L(f2(x)):

If this is not clear, consider first a case like L=Dn or work through the next example for the order 2 case.

Example 15. (extra) Suppose that L=D2+P (x)D+Q(x). Verify that the operator L is linear.

Solution. We need to show that the operator L satisfies

L(c1f1(x)+ c2f2(x))= c1L(f1(x))+ c2L(f2(x))

for any functions f1(x); f2(x) and any constants c1; c2. Indeed:

L(c1f1+ c2f2) = (c1f1+ c2f2)
00+P (x)(c1f1+ c2f2)

0+Q(x)(c1f1+ c2f2)

= c1ff100+P (x)f1
0+Q(x)f1g+ c2ff200+P (x)f2

0+Q(x)f2g
= c1 �Lf1+ c2 �Lf2
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Example 16. Consider the following DEs. If linear, write them in operator form as Ly= f(x).

(a) y 00=xy

(b) x2y 00+xy 0=(x2+4)y+x(x2+3)

(c) y 00= y 0+2y+2(1¡x¡x2)

(d) y 00= y 0+2y+2(1¡x¡ y2)

Solution.

(a) This is a homogeneous linear DE: (D2¡ x)
L

y= 0
f(x)

Note. This is known as the Airy equation, which we will meet again later. The general solution is of the
form C1y1(x)+C2y2(x) for two special solutions y1; y2. [In the literature, one usually chooses functions
called Ai(x) and Bi(x) as y1 and y2. See: https://en.wikipedia.org/wiki/Airy_function]

(b) This is an inhomogeneous linear DE: (x2D2+xD¡ (x2+4))

L

y= x(x2+3)

f(x)

Note. The corresponding homogeneous DE is an instance of the �modified Bessel equation� x2y 00 +
xy 0¡ (x2+�2)y=0, namely the case �=2. Because they are important for applications (but cannot
be written in terms of familiar functions), people have introduced names for two special solutions of this
differential equation: I�(x) and K�(x) (called modified Bessel functions of the first and second kind).
It follows that the general solution of the modified Bessel equation is C1I�(x)+C2K�(x).
In our case. The general solution of the homogeneous DE (which is the modified Bessel equation with
� = 2) is C1I2(x) + C2K2(x). On the other hand, we can (do it!) easily check (this is coming from
nowhere at this point!) that yp=¡x is a particular solution to the original inhomogeneous DE.
It follows that the general solution to the original DE is C1I2(x)+C2K2(x)¡ x.

(c) This is an inhomogeneous linear DE: (D2¡D¡ 2)
L

y=2(1¡ x¡ x2)
f(x)

Note. We will recall in Example 17 that the corresponding homogeneous DE (D2 ¡ D ¡ 2)y = 0 has
general solution C1e2x+C2e

¡x. On the other hand, we can check that yp= x2 is a particular solution
of the original inhomogeneous DE. (Do you recall from DE1 how to find this particular solution?)
It follows that the general solution to the original DE is x2+C1e

2x+C2e
¡x.

(d) This is not a linear DE because of the term y2. It cannot be written in the form Ly= f(x).
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Sketch of Lecture 3 Mon, 8/26/2024

Homogeneous linear DEs with constant coefficients

Example 17. Find the general solution to y 00¡ y 0¡ 2y=0.
Solution. We recall from Differential Equations I that erx solves this DE for the right choice of r.
Plugging erx into the DE, we get r2erx¡ rerx¡ 2erx=0.
Equivalently, r2¡ r¡ 2=0. This is called the characteristic equation. Its solutions are r=2;¡1.
This means we found the two solutions y1= e2x, y2= e¡x.
Since this a homogeneous linear DE, the general solution is y=C1e

2x+C2e
¡x.

Solution. (operators) y 00¡ y 0¡ 2y=0 is equivalent to (D2¡D¡ 2)y=0.

Note that D2¡D¡ 2= (D¡ 2)(D+1) is the characteristic polynomial.
It follows that we get solutions to (D¡ 2)(D+1)y=0 from (D¡ 2)y=0 and (D+1)y=0.

(D¡ 2)y=0 is solved by y1= e2x, and (D+1)y=0 is solved by y2= e¡x; as in the previous solution.

Example 18. Solve y 00¡ y 0¡ 2y=0 with initial conditions y(0)= 4, y 0(0)=5.
Solution. From the previous example, we know that y(x)=C1e

2x+C2e
¡x.

To match the initial conditions, we need to solve C1+C2=4, 2C1¡C2=5. We find C1=3, C2=1.
Hence the solution is y(x)= 3e2x+ e¡x.

Set D = d

dx
. Every homogeneous linear DE with constant coefficients can be written as

p(D)y=0, where p(D) is a polynomial in D, called the characteristic polynomial.

For instance. y 00¡ y0¡ 2y=0 is equivalent to Ly=0 with L=D2¡D¡ 2.

Example 19. Find the general solution of y 000+7y 00+ 14y 0+8y=0.
Solution. This DE is of the form p(D) y=0 with characteristic polynomial p(D)=D3+7D2+ 14D+8.
The characteristic polynomial factors as p(D)= (D+1)(D+2)(D+4). (Don't worry! You won't be asked to
factor cubic polynomials by hand.)
Hence, by the same argument as in Example 17, we find the solutions y1= e¡x, y2= e¡2x, y3= e¡4x. That's
enough (independent!) solutions for a third-order DE.
The general solution therefore is y(x)=C1 e

¡x+C2 e
¡2x+C3 e

¡4x.

This approach applies to any homogeneous linear DE with constant coefficients!
One issue is that roots might be repeated. In that case, we are currently missing solutions. The following result
provides the missing solutions.

Theorem 20. Consider the homogeneous linear DE with constant coefficients p(D)y=0.

� If r is a root of the characteristic polynomial and if k is its multiplicity, then k (inde-
pendent) solutions of the DE are given by xjerx for j=0; 1; :::; k¡ 1.

� Combining these solutions for all roots, gives the general solution.
This is because the order of the DE equals the degree of p(D), and a polynomial of degree n has (counting
with multiplicity) exactly n (possibly complex) roots.

In the complex case. If r = a � bi are roots of the characteristic polynomial and if k is its multiplicity, then
2k (independent) real solutions of the DE are given by xjeaxcos(bx) and xjeaxsin(bx) for j=0; 1; :::; k¡ 1.
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Proof. Let r be a root of the characteristic polynomial of multiplicity k. Then p(D)= q(D) (D¡ r)k.
We need to find k solutions to the simpler DE (D¡ r)ky=0.
It is natural to look for solutions of the form y= c(x)erx.
[We know that c(x)= 1 provides a solution. Note that this is the same idea as for variation of constants.]

Note that (D¡ r)[c(x)erx] = (c0(x)erx+ c(x)rerx)¡ rc(x)erx= c0(x)erx.

Repeating, we get (D ¡ r)2[c(x)erx] = (D ¡ r)[c 0(x)erx] = c 00(x)erx and, eventually, (D ¡ r)k[c(x)erx] =

c(k)(x)erx.
In particular, (D¡ r)ky=0 is solved by y= c(x)erx if and only if c(k)(x)= 0.

The DE c(k)(x)=0 is clearly solved by xj for j=0;1; :::;k¡1, and it follows that xjerx solves the original DE. �

Example 21. Find the general solution of y 000=0.
Solution. We know from Calculus that the general solution is y(x)=C1+C2x+C3x

2.

Solution. The characteristic polynomial p(D) =D3 has roots 0; 0; 0. By Theorem 20, we have the solutions
y(x)= xj e0x= xj for j=0; 1; 2, so that the general solution is y(x)=C1+C2x+C3x

2.

Example 22. Find the general solution of y 000¡ y 00¡ 5y 0¡ 3y=0.
Solution. The characteristic polynomial p(D)=D3¡D2¡ 5D¡ 3= (D¡ 3)(D+1)2 has roots 3;¡1;¡1.
By Theorem 20, the general solution is y(x)=C1e

3x+(C2+C3x)e
¡x.

Example 23. Find the general solution of y 00+ y=0.
Solution. The characteristic polynomials is p(D)=D2+1=0 which has no solutions over the reals.
Over the complex numbers, by definition, the roots are i and ¡i.
So the general solution is y(x)=C1 e

ix+C2 e
¡ix.

Solution. On the other hand, we easily check that y1= cos(x) and y2= sin(x) are two solutions.
Hence, the general solution can also be written as y(x)=D1 cos(x)+D2 sin(x).

Important comment. That we have these two different representations is a consequence of Euler's identity

eix= cos(x)+ i sin(x):

Note that e¡ix= cos(x)¡ i sin(x).

On the other hand, cos(x)= 1

2
(eix+ e¡ix) and sin(x)= 1

2i
(eix¡ e¡ix).

[Recall that the first formula is an instance of Re(z)= 1

2
(z+ z�) and the second of Im(z)= 1

2i
(z¡ z�).]

Example 24. Find the general solution of y 00¡ 4y 0+ 13y=0.
Solution. The characteristic polynomial p(D)=D2¡ 4D+ 13 has roots 2+3i; 2¡ 3i.
Hence, the general solution is y(x)=C1e

2xcos(3x)+C2e
2xsin(3x).

Note. e(2+3i)x= e2xe3ix= e2x(cos(3x)+ i sin(3x))
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Sketch of Lecture 4 Wed, 8/28/2024

Example 25. (review) Find the general solution of y 000¡ 3y 0+2y=0.
Solution. The characteristic polynomial p(D)=D3¡ 3D+2= (D¡ 1)2(D+2) has roots 1; 1;¡2.
By Theorem 20, the general solution is y(x)= (C1+C2x)e

x+C2e
¡2x.

Inhomogeneous linear DEs with constant coefficients

Example 26. (�warmup�) Find the general solution of y 00+4y= 12x.
Solution. Here, p(D)=D2+4, which has roots �2i.
Hence, the general solution is y(x)= yp(x)+C1cos(2x)+C2sin(2x). It remains to find a particular solution yp.

Noting that D2 � (12x)= 0, we apply D2 to both sides of the DE.

We get D2(D2+4) � y=0, which is a homogeneous linear DE! Its general solution is C1+C2x+C3cos(2x)+
C4sin(2x). In particular, yp is of this form for some choice of C1; :::; C4.
It simplifies our life to note that there has to be a particular solution of the simpler form yp=C1+C2x.

[Why?! Because we know that C3cos(2x)+C4sin(2x) can be added to any particular solution.]

It only remains to find appropriate values C1; C2 such that yp
00+ 4yp = 12x. Since yp00+ 4yp = 4C1 + 4C2x,

comparing coefficients yields 4C1=0 and 4C2= 12, so that C1=0 and C2=3. In other words, yp=3x.
Therefore, the general solution to the original DE is y(x)= 3x+C1cos(2x)+C2sin(2x).

Example 27. (�warmup�) Find the general solution of y 00+4y 0+4y= e3x.
Solution. This is p(D)y= e3x with p(D)=D2+4D+4= (D+2)2.

Hence, the general solution is y(x)= yp(x)+ (C1+C2x)e
¡2x. It remains to find a particular solution yp.

Note that (D¡ 3)e3x=0. Hence, we apply (D¡ 3) to the DE to get (D¡ 3)(D+2)2y=0.

This homogeneous linear DE has general solution (C1+C2x)e
¡2x+C3e

3x. We conclude that the original DE
must have a particular solution of the form yp=C3e

3x.

To determine the value of C3, we plug into the original DE: yp
00+4yp

0 +4yp=(9+4 �3+4)C3e3x=
!
e3x. Hence,

C3=1/25. In conclusion, the general solution is y(x)= (C1+C2x)e
¡2x+

1

25
e3x.

Comment. See Example 29 for the same solution in more compact form.

We found a recipe for solving nonhomogeneous linear DEs with constant coefficients.
Our approach works for p(D)y= f(x) whenever the right-hand side f(x) is the solution of some homogeneous
linear DE with constant coefficients: q(D)f(x)= 0

Theorem 28. (method of undetermined coefficients) To find a particular solution yp to an
inhomogeneous linear DE with constant coefficients p(D)y= f(x):

� Find q(D) so that q(D)f(x)= 0. [This does not work for all f(x).]

� Let r1; :::; rn be the (�old�) roots of the polynomial p(D).
Let s1; :::; sm be the (�new�) roots of the polynomial q(D).

� It follows that yp solves the homogeneous DE q(D) p(D)y=0.
The characteristic polynomial of this DE has roots r1; :::; rn, s1; :::; sm.

Let v1; :::; vm be the �new� solutions (i.e. not solutions of the �old� p(D)y=0).

By plugging into p(D)yp= f(x), we find (unique) Ci so that yp=C1v1+ :::+Cmvm.

Because of the final step, this approach is often called method of undetermined coefficients.

For which f(x) does this work? By Theorem 20, we know exactly which f(x) are solutions to homogeneous
linear DEs with constant coefficients: these are linear combinations of exponentials xj erx (which includes
xj eaxcos(bx) and xj eaxsin(bx)).
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Example 29. (again) Determine the general solution of y 00+4y 0+4y= e3x.

Solution. The �old� roots are ¡2; ¡2. The �new� roots are 3. Hence, there has to be a particular solution of
the form yp=Ce3x. To find the value of C, we plug into the DE.

yp
00+4yp

0 +4yp=(9+4 � 3+4)Ce3x=
!
e3x. Hence, C=1/25.

Therefore, the general solution is y(x)= (C1+C2x)e
¡2x+

1

25
e3x.

Example 30. Determine the general solution of y 00+4y 0+4y=7e¡2x.
Solution. The �old� roots are ¡2;¡2. The �new� roots are ¡2. Hence, there has to be a particular solution of
the form yp=Cx2e¡2x. To find the value of C, we plug into the DE.

yp
0 =C(¡2x2+2x)e¡2x

yp
00=C(4x2¡ 8x+2)e¡2x

yp
00+4yp

0 +4yp=2Ce¡2x=
!
7e¡2x

It follows that C =7/2, so that yp=
7

2
x2e¡2x. The general solution is y(x)=

�
C1+C2x+

7

2
x2
�
e¡2x.

Example 31. Determine a particular solution of y 00+4y 0+4y=2e3x¡ 5e¡2x.
Solution. Write the DE as Ly=2e3x¡ 5e¡2x where L=D2+4D+4. Instead of starting all over, recall that
in Example 29 we found that y1=

1

25
e3x satisfies Ly1= e3x. Also, in Example 30 we found that y2=

7

2
x2e¡2x

satisfies Ly2=7e¡2x.
By linearity, it follows that L(Ay1+By2)=ALy1+BLy2=Ae3x+7Be¡2x.
To get a particular solution yp of our DE, we need A=2 and 7B=¡5.

Hence, yp=2y1¡ 5

7
y2=

2

25
e3x¡ 5

2
x2e¡2x.

Example 32. (homework) Determine the general solution of y 00¡ 2y 0+ y=5sin(3x).
Solution. Since D2¡ 2D+1= (D¡ 1)2, the �old� roots are 1; 1. The �new� roots are �3i. Hence, there has
to be a particular solution of the form yp=A cos(3x)+B sin(3x).
To find the values of A and B, we plug into the DE.
yp
0 =¡3A sin(3x)+ 3B cos(3x)

yp
00=¡9A cos(3x)¡ 9B sin(3x)

yp
00¡ 2yp0 + yp=(¡8A¡ 6B)cos(3x)+ (6A¡ 8B)sin(3x)=

!
5sin(3x)

Equating the coefficients of cos(x), sin(x), we obtain the two equations ¡8A¡ 6B=0 and 6A¡ 8B=5.

Solving these, we find A= 3

10
, B=¡2

5
. Accordingly, a particular solution is yp=

3

10
cos(3x)¡ 2

5
sin(3x).

The general solution is y(x)= 3

10
cos(3x)¡ 2

5
sin(3x)+ (C1+C2x)e

x.

Example 33. (homework)What is the shape of a particular solution of y 00+4y 0+4y=xcos(x)?
Solution. The �old� roots are ¡2;¡2. The �new� roots are �i;�i. Hence, there has to be a particular solution
of the form yp=(C1+C2x)cos(x)+ (C3+C4x)sin(x).

Continuing to find a particular solution. To find the value of the Cj's, we plug into the DE.
yp
0 =(C2+C3+C4x)cos(x)+ (C4¡C1¡C2x)sin(x)
yp
00=(2C4¡C1¡C2x)cos(x)+ (¡2C2¡C3¡C4x)sin(x)
yp
00+4yp

0 +4yp=(3C1+4C2+4C3+2C4+(3C2+4C4)x)cos(x)

+ (¡4C1¡ 2C2+3C3+4C4+(¡4C2+3C4)x)sin(x)=
!
x cos(x).

Equating the coefficients of cos(x), xcos(x), sin(x), xsin(x), we get the equations 3C1+4C2+4C3+2C4=0,
3C2+4C4=1, ¡4C1¡ 2C2+3C3+4C4=0, ¡4C2+3C4=0.

Solving (this is tedious!), we find C1=¡ 4

125
, C2=

3

25
, C3=¡ 22

125
, C4=

4

25
.

Hence, yp=
�
¡ 4

125
+

3

25
x
�
cos(x)+

�
¡ 22

125
+

4

25
x
�
sin(x).
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Sketch of Lecture 5 Fri, 8/30/2024

Example 34. (review)What is the shape of a particular solution of y 00+4y 0+4y=4e3xsin(2x)¡
x sin(x)?
Solution. The �old� roots are ¡2;¡2. The �new� roots are 3� 2i;�i;�i.
Hence, there has to be a particular solution of the form
yp=C1e

3xcos(2x)+C2e
3xsin(2x)+ (C3+C4x)cos(x)+ (C5+C6x)sin(x).

Continuing to find a particular solution. To find the values of C1; :::; C6, we plug into the DE. But this final
step is so boring that we don't go through it here. Computers (currently?) cannot afford to be as selective; mine
obediently calculated: yp=¡ 4

841
e3x(20cos(2x)¡ 21sin(2x))+ 1

125
((¡22+ 20x)cos(x)+ (4¡ 15x)sin(x))

Sage

In practice, we are happy to let a machine do tedious computations. Let us see how to use the
open-source computer algebra system Sage to do basic computations for us.
Sage is freely available at sagemath.org. Instead of installing it locally (it's huge!) we can conveniently use it
in the cloud at cocalc.com from any browser.
[For basic computations, you can also simply use the textbox on our course website.]
Sage is built as a Python library, so any Python code is valid. For starters, we will use it as a fancy calculator.

Example 35. To solve the differential equation y 00+4y 0+4y=7e¡2x, as we did in Example 30,
we can use the following:

>>> x = var('x')

>>> y = function('y')(x)

>>> desolve(diff(y,x,2) + 4*diff(y,x) + 4*y == 7*exp(-2*x), y)

7
2
x2 e(¡2 x)+(K2x+K1) e

(¡2 x)

This confirms, as we had found, that the general solution is y(x)=
�
C1+C2x+

7

2
x2
�
e¡2x.

Example 36. Similarly, Sage can solve initial value problems such as y 00¡ y 0¡2y=0 with initial
conditions y(0)= 4, y 0(0)= 5.
>>> x = var('x')

>>> y = function('y')(x)

>>> desolve(diff(y,x,2) - diff(y,x) - 2*y == 0, y, ics=[0,4,5])

3 e(2 x)+ e(¡x)

This matches the (unique) solution y(x)= 3e2x+ e¡x that we derived in Example 18.

Armin Straub
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More on differential operators

Example 37. We have been factoring differential operators like D2+4D+4= (D+2)2.
Things become much more complicated when the coefficients are not constant!
For instance, the linear DE y 00+4y 0+4xy=0 can be written as Ly=0 with L=D2+4D+4x. However, in
general, such operators cannot be factored (unless we allow as coefficients functions in x that we are not familiar
with). [On the other hand, any ordinary polynomial can be factored over the complex numbers.]
One indication that things become much more complicated is that x and D do not commute: xD=/ Dx!!

Indeed, (xD)f(x)=xf 0(x) while (Dx)f(x)= d

dx
[xf(x)]= f(x)+ xf 0(x)= (1+ xD)f(x).

This computation shows that, in fact, Dx= xD+1.

Review. Linear DEs are those that can be written as Ly= f(x) where L is a linear differential
operator: namely,

L= pn(x)Dn+ pn¡1(x)Dn¡1+ :::+ p1(x)D+ p0(x): (1)

Recall that the operators xD and Dx are not the same: instead, Dx=xD+1.
We say that an operator of the form (1) is in normal form.

For instance. xD is in normal form, whereas Dx is not in normal form. It follows from the previous example
that the normal form of Dx is xD+1.

Example 38. Let a= a(x) be some function.

(a) Write the operator Da in normal form [normal form means as in (1)].

(b) Write the operator D2a in normal form.

Solution.

(a) (Da)f(x)= d

dx
[a(x) f(x)] = a0(x)f(x)+ a(x)f 0(x)= (a0+ aD)f(x)

Hence, Da= aD+ a0.

(b) (D2a)f(x)=
d2

dx2
[a(x) f(x)] =

d

dx
[a0(x)f(x)+ a(x)f 0(x)]= a00(x)f(x)+ 2a0(x)f 0(x)+ a(x)f 00(x)

= (a00+2a0D+ aD2)f(x)

Hence, D2a= aD2+2a0D+ a00.

Armin Straub
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Sketch of Lecture 6 Wed, 9/4/2024

Example 39. (review) Let a= a(x) be some function.

(a) Write the operator Da in normal form [normal form means as in (1)].

(b) Write the operator D2a in normal form.

Solution.

(a) (Da)f(x)= d

dx
[a(x) f(x)] = a0(x)f(x)+ a(x)f 0(x)= (a0+ aD)f(x)

Hence, Da= aD+ a0.

(b) (D2a)f(x)=
d2

dx2
[a(x) f(x)] =

d

dx
[a0(x)f(x)+ a(x)f 0(x)]= a00(x)f(x)+ 2a0(x)f 0(x)+ a(x)f 00(x)

= (a00+2a0D+ aD2)f(x)

Hence, D2a= aD2+2a0D+ a00.
Alternatively. We can also useDa=aD+a0 from the previous part and work with the operators directly:
D2a=D(Da)=D(aD+ a0)=DaD+Da0=(aD+ a0)D+ a0D+ a00= aD2+2a0D+ a00.

Example 40. Suppose that a and b depend on x. Expand (D+ a)(D+ b) in normal form.

Solution. (D+ a)(D+ b)=D2+Db+ aD+ ab=D2+(bD+ b0)+ aD+ ab=D2+(a+ b)D+ ab+ b0

Comment. Of course, if b is a constant, then b0=0 and we just get the familiar expansion.
Comment. At this point, it is not surprising that, in general, (D+ a)(D+ b)=/ (D+ b)(D+ a).

Example 41. Suppose we want to factor D2+ pD+ q as (D+a)(D+ b). [p; q; a; b depend on x]

(a) Spell out equations to find a and b.

(b) Find all factorizations of D2. [An obvious one is D2=D �D but there are others!]

Solution.

(a) Matching coefficients with (D+a)(D+ b)=D2+(a+ b)D+ab+ b0 (we expanded this in the previous
example), we find that we need

p= a+ b; q= ab+ b0:

Equivalently, a= p¡ b and q= (p¡ b)b+ b0. The latter is a nonlinear (!) DE for b. Once solved for b,
we obtain a as a= p¡ b.

(b) This is the case p= q=0. The DE for b becomes b0= b2.
Because it is separable (show all details!), we find that b(x)= 1

C ¡ x
or b(x)= 0.

Since a=¡b, we obtain the factorizations D2=
�
D¡ 1

C ¡x

��
D+

1

C ¡x

�
and D2=D �D.

Our computations show that there are no further factorizations.

Comment. Note that this example illustrates that factorization of differential operators is not unique!

For instance, D2=D �D and D2=
�
D+

1

x

�
�
�
D¡ 1

x

�
(the case C=0 above).

Comment. In general, the nonlinear DE for b does not have any polynomial or rational solution (or, in fact, any
solution that can be expressed in terms of functions that we are familiar with).
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Solving linear recurrences with constant coefficients

Motivation: Fibonacci numbers

The numbers 0; 1; 1; 2; 3; 5; 8; 13; 21; 34; ::: are called Fibonacci numbers.
They are defined by the recursion Fn+1=Fn+Fn¡1 and F0=0, F1=1.
How fast are they growing?
Have a look at ratios of Fibonacci numbers: 2

1
= 2, 3

2
= 1.5, 5

3
� 1.667, 8

5
= 1.6, 13

8
= 1.625, 21

13
= 1.615,

34
21
= 1.619, :::

These ratios approach the golden ratio '= 1+ 5
p

2
= 1.618:::

In other words, it appears that lim
n!1

Fn+1
Fn

= 1+ 5
p

2
.

We will soon understand where this is coming from.

We can derive all of that using the same ideas as in the case of linear differential equations. The
crucial observation that we can write the recursion in operator form:

Fn+1=Fn+Fn¡1 is equivalent to (N2¡N ¡ 1)Fn=0.
Here, N is the shift operator: Nan= an+1.

Comment. Recurrence equations are discrete analogs of differential equations.

For instance, recall that f 0(x)= lim
h!0

1
h
[f(x+h)¡ f(x)].

Setting h=1, we get the rough estimate f 0(x)� f(x+1)¡ f(x) so thatD is (roughly) approximated by N ¡1.

Example 42. Find the general solution to the recursion an+1=7an.
Solution. Note that an=7an¡1=7 � 7an¡2= ���=7na0.
Hence, the general solution is an=C � 7n.
Comment. This is analogous to y 0=7y having the general solution y(x)=Ce7x.

Solving recurrence equations

Example 43. (�warmup�) Let the sequence an be defined by the recursion an+2= an+1+6an
and the initial values a0=1, a1=8. Determine the first few terms of the sequence.

Solution. a2= a1+6a0= 14, a3= a2+6a1= 62, a4= 146, :::

Comment. In the next example, we get ready to solve this recursion and to find an explicit formula for the
sequence an.

Example 44. (�warmup�) Find the general solution to the recursion an+2= an+1+6an.
Solution. The recursion can be written as p(N)an=0 where p(N)=N2¡N ¡ 6= (N ¡ 3)(N +2).
Since (N ¡ 3)an=0 has solution an=C � 3n, and since (N +2)an=0 has solution an=C � (¡2)n (compare
previous example), we conclude that the general solution is an=C1 � 3n+C2 � (¡2)n.
Comment. This must indeed be the general solution, because the two degrees of freedom C1; C2 allow us to
match any initial conditions a0=A, a1=B: the two equations C1+C2=A and 3C1¡2C2=B in matrix form

are
�
1 1
3 ¡2

��
C1

C2

�
=

�
A
B

�
, which always has a (unique) solution because det

��
1 1
3 ¡2

��
=¡5=/ 0.
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Sketch of Lecture 7 Fri, 9/6/2024

Review. The recurrence an+1=5an has general solution an=C � 5n.
In operator form, the recurrence is (N ¡ 5)an= 0, where p(N) =N ¡ 5 is the characteristic polynomial. The
characteristic root 5 corresponds to the solution 5n.
This is analogous to the case of DEs p(D)y=0 where a root r of p(D) corresponds to the solution erx.

Example 45. (cont'd) Let the sequence an be defined by an+2=an+1+6an and a0=1, a1=8.

(a) Determine the first few terms of the sequence.

(b) Find a formula for an.

(c) Determine lim
n!1

an+1
an

.

Solution.

(a) a2= a1+6a0= 14, a3= a2+6a1= 62, a4= 146, :::

(b) The recursion can be written as p(N)an=0 where p(N)=N2¡N ¡ 6 has roots 3;¡2.
Hence, an= C1 3

n+ C2 (¡2)n and we only need to figure out the two unknowns C1, C2. We can do
that using the two initial conditions: a0=C1+C2=1, a1=3C1¡ 2C2=8.
Solving, we find C1=2 and C2=¡1 so that, in conclusion, an=2 � 3n¡ (¡2)n.
Comment. Such a formula is sometimes called a Binet-like formula (because it is of the same kind as
the Binet formula for the Fibonacci numbers that we can derive in the same manner).

(c) It follows from our formula that lim
n!1

an+1
an

=3 (because j3j> j¡2j so that 3n dominates (¡2)n).

To see this, we need to realize that, for large n, 3n is much larger than (¡2)n so that we have an�2 �3n

when n is large. Hence, an+1
an

� 2 � 3n+1
2 � 3n =3.

Alternatively, to be very precise, we can observe that (by dividing each term by 3n)

an+1
an

=
2 � 3n+1¡ (¡2)n+1
2 � 3n¡ (¡2)n =

2 � 3+2
�
¡2

3

�n
2 � 1¡

�
¡2

3

�n ¡!as n!1 2 � 3+0
2 � 1¡ 0 =3:

Example 46. (�warmup�) Find the general solution to the recursion an+2=4an+1¡ 4an.
Solution. The recursion can be written as p(N)an=0 where p(N)=N2¡ 4N +4 has roots 2; 2.
So a solution is 2n and, from our discussion of DEs, it is probably not surprising that a second solution is n �2n.
Hence, the general solution is an=C1 � 2n+C2 �n � 2n=(C1+C2n) � 2n.
Comment. This is analogous to (D¡ 2)2y 0=0 having the general solution y(x)= (C1+C2x)e

2x.
Check! Let's check that an=n � 2n indeed satisfies the recursion (N ¡ 2)2an=0.

(N ¡ 2)n � 2n=(n+1)2n+1¡ 2n � 2n=2n+1, so that (N ¡ 2)2n � 2n=(N ¡ 2)2n+1=0.
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Combined, we obtain the following analog of Theorem 20 for recurrence equations (RE):

Comment. Sequences that are solutions to such recurrences are called constant recursive or C-finite.

Theorem 47. Consider the homogeneous linear RE with constant coefficients p(N)an=0.

� If r is a root of the characteristic polynomial and if k is its multiplicity, then k (inde-
pendent) solutions of the RE are given by njrn for j=0; 1; :::; k¡ 1.

� Combining these solutions for all roots, gives the general solution.

Moreover. If r is the sole largest root by absolute value among the roots contributing to an, then an�Crn
(if r is not repeated�what if it is?) for large n. In particular, it follows that

lim
n!1

an+1
an

= r:

Advanced comment. Things can get weird if there are several roots of the same absolute value. Consider, for
instance, the case an=2n+(¡2)n. Can you see that, in this case, the limit limn!1

an+1
an

doesn't even exist?

Example 48. Find the general solution to the recursion an+3=2an+2+ an+1¡ 2an.
Solution. The recursion can be written as p(N)an= 0 where p(N) =N3¡ 2N2¡N + 2 has roots 2; 1;¡1.
(Here, we may use some help from a computer algebra system to find the roots.)
Hence, the general solution is an=C1 � 2n+C2+C3 � (¡1)n.

Example 49. Find the general solution to the recursion an+3=3an+2¡ 4an.
Solution. The recursion can be written as p(N)an=0 where p(N)=N3¡3N2+4 has roots 2;2;¡1. (Again,
we may use some help from a computer algebra system to find the roots.)
Hence, the general solution is an=(C1+C2n) � 2n+C3 � (¡1)n.

Theorem 50. (Binet's formula) Fn=
1

5
p

h�
1+ 5

p

2

�n
¡
�
1¡ 5

p

2

�ni
Proof. The recursion Fn+1=Fn+Fn¡1 can be written as p(N)an=0 where p(N)=N2¡N ¡ 1 has roots

�1=
1+ 5

p

2
� 1.618; �2=

1¡ 5
p

2
�¡0.618:

Hence, Fn=C1 ��1n+C2 ��2n and we only need to figure out the two unknowns C1, C2. We can do that using

the two initial conditions: F0=C1+C2=
!
0, F1=C1 �

1+ 5
p

2
+C2 �

1¡ 5
p

2
=
!
1.

Solving, we find C1=
1

5
p and C2=¡ 1

5
p so that, in conclusion, Fn=

1

5
p (�1

n¡�2n), as claimed. �

Comment. For large n, Fn�
1

5
p �1

n (because �2
n becomes very small). In fact, Fn= round

�
1

5
p
�
1+ 5

p

2

�n�
.

Back to the quotient of Fibonacci numbers. In particular, because �1
n dominates �2

n, it is now transparent
that the ratios Fn+1

Fn
approach �1=

1+ 5
p

2
� 1.618. To be precise, note that

Fn+1
Fn

=

1

5
p (�1

n+1¡�2
n+1)

1

5
p (�1

n¡�2n)
=
�1
n+1¡�2

n+1

�1
n¡�2n

=
�1¡�2

�
�2
�1

�n
1¡
�
�2
�1

�n ¡!n!1 �1¡ 0
1¡ 0 =�1:

In fact, it follows from �2 < 0 that the ratios Fn+1
Fn

approach �1 in the alternating fashion that we observed
numerically earlier. Can you see that?
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Example 51. Consider the sequence an defined by an+2 = 4an+1 + 9an and a0 = 1, a1 = 2.
Determine lim

n!1

an+1
an

.

Solution. The recursion can be written as p(N)an=0 where p(N)=N2¡4N ¡9 has roots 4� 52
p

2
�5.6056;

¡1.6056. Both roots have to be involved in the solution in order to get integer values.
We conclude that lim

n!1

an+1
an

=2+ 13
p

� 5.6056 (because j5.6056j> j¡1.6056j).

Example 52. (extra) Consider the sequence an defined by an+2 = 2an+1 + 4an and a0 = 0,
a1=1. Determine lim

n!1

an+1
an

.

First few terms of sequence. 0; 1; 2; 8; 24; 80; 256; 832; :::
These are actually related to Fibonacci numbers. Indeed, an= 2n¡1Fn. Can you prove this directly from the
recursions? Alternatively, this follows from comparing the Binet-like formulas.

Solution. Proceeding as in the previous example, we find lim
n!1

an+1
an

=1+ 5
p
� 3.23607.

Comment. With just a little more work, we find the Binet-like formula an=
(1+ 5

p
)n¡ (1¡ 5

p
)n

2 5
p .
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Sketch of Lecture 8 Mon, 9/9/2024

Example 53. (review) Consider the sequence an defined by an+2 = an+1 + 2an and a0 = 1,
a1=8.

(a) Determine the first few terms of the sequence.

(b) Find a formula for an.

(c) Determine lim
n!1

an+1
an

.

Solution.

(a) a2= 10, a3= 26

(b) The recursion can be written as p(N)an=0 where p(N)=N2¡N ¡ 2 has roots 2;¡1.
Hence, an= C1 2

n+ C2 (¡1)n and we only need to figure out the two unknowns C1, C2. We can do
that using the two initial conditions: a0=C1+C2=1, a1=2C1¡C2=8.
Solving, we find C1=3 and C2=¡2 so that, in conclusion, an=3 � 2n¡ 2(¡1)n.

(c) It follows from the formula an=3 � 2n¡ 2(¡1)n that lim
n!1

an+1
an

=2.

Comment. In fact, this already follows from an = C1 2
n + C2 (¡1)n provided that C1 =/ 0. Since

an=C2 (¡1)n (the case C1=0) is not compatible with a0=1, a1=8, we can conclude lim
n!1

an+1
an

=2

without computing the actual values of C1 and C2.

Crash course: Eigenvalues and eigenvectors

If Ax=�x (and x=/ 0), then x is an eigenvector of A with eigenvalue � (just a number).

Note that, for the equation Ax=�x to make sense, A needs to be a square matrix (i.e. n�n).

Key observation:

Ax=�x
() Ax¡�x=0
() (A¡�I)x=0
This homogeneous system has a nontrivial solution x if and only if det(A¡�I)= 0.

To find eigenvectors and eigenvalues of A:

(a) First, find the eigenvalues � by solving det(A¡�I)= 0.
det(A¡�I) is a polynomial in �, called the characteristic polynomial of A.

(b) Then, for each eigenvalue �, find corresponding eigenvectors by solving (A¡�I)x=0.
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Example 54. Determine the eigenvalues and eigenvectors of A=
�
8 ¡10
5 ¡7

�
.

Solution. The characteristic polynomial is:

det(A¡�I)=det
��

8¡� ¡10
5 ¡7¡�

��
=(8¡�)(¡7¡�)+ 50=�2¡�¡ 6= (�¡ 3)(�+2)

Hence, the eigenvalues are �=3 and �=¡2.

� To find an eigenvector for �=3, we need to solve
�
5 ¡10
5 ¡10

�
x=0.

Hence, x=
�
2
1

�
is an eigenvector for �=3.

� To find an eigenvector for �=¡2, we need to solve
�
10 ¡10
5 ¡5

�
x=0.

Hence, x=
�
1
1

�
is an eigenvector for �=¡2.

Check!
�
8 ¡10
5 ¡7

��
2
1

�
=

�
6
3

�
=3 �

�
2
1

�
and

�
8 ¡10
5 ¡7

��
1
1

�
=

�
¡2
¡2

�
=¡2 �

�
1
1

�
On the other hand, a random other vector like

�
1
2

�
is not an eigenvector:

�
8 ¡10
5 ¡7

��
1
2

�
=

�
¡12
¡9

�
=/ �

�
1
2

�
.

Example 55. (homework) Determine the eigenvalues and eigenvectors of A=
�
1 ¡6
1 ¡4

�
.

Solution. (final answer only) x=
�
2
1

�
is an eigenvector for �=¡2, and x=

�
3
1

�
is an eigenvector for �=¡1.
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Sketch of Lecture 9 Wed, 9/11/2024

Preview: A system of recurrence equations equivalent to the Fibonacci recurrence

Example 56. We model rabbit reproduction as follows.

Each month, every pair of adult rabbits pro-
duces one pair of baby rabbit as offspring.
Meanwhile, it takes baby rabbits one month
to mature to adults.

adult rabbit baby rabbit
1

1

1

Comment. In this simplified model, rabbits always come in male/female pairs and no rabbits die. Though these
features might make it sound fairly useless, the model may have some merit when describing populations under
ideal conditions (unlimited resources) and over short time (no deaths).
Historical comment. The question how many rabbits there are after one year, when starting out with a pair of
baby rabbits is famously included in the 1202 textbook of the Italian mathematician Leonardo of Pisa, known
as Fibonacci.

If we start with one baby rabbit pair, how many adult rabbit pairs are there after n months?
Solution. Let an be the number of adult rabbit pairs after n months. Likewise, bn is the number of baby rabbit
pairs. The transition from one month to the next is given by an+1=an+ bn and bn+1=an. Using bn=an¡1
(from the second equation) in the first equation, we obtain an+1= an+ an¡1.
The initial conditions are a0=0 and a1=1 (the latter follows from b0=1).
It follows that the number bn of adult rabbit pairs are precisely the Fibonacci numbers Fn.
Comment. Note that the transition from one month to the next is described by in matrix-vector form as�

an+1
bn+1

�
=

�
an+ bn
an

�
=

�
1 1
1 0

��
an
bn

�
:

Writing an=
�
an
bn

�
, this becomes an+1=

�
1 1
1 0

�
an with a0=

�
0
1

�
.

Consequently, an=
�
1 1
1 0

�n
a0=

�
1 1
1 0

�n� 0
1

�
.

Looking ahead. Can you see how, starting with the Fibonacci recurrence Fn+2= Fn+1+ Fn,
we can arrive at this same system?

Solution. Set an=
�
Fn+1
Fn

�
. Then an+1=

�
Fn+2
Fn+1

�
=

�
Fn+1+Fn
Fn+1

�
=

�
1 1
1 0

��
Fn+1
Fn

�
=

�
1 1
1 0

�
an.

Armin Straub
straub@southalabama.edu

19



Systems of recurrence equations

Example 57. (review) Consider the sequence an defined by an+2= 4an¡ 3an+1 and a0= 1,
a1=2. Determine lim

n!1

an+1
an

.

Solution. The recursion can be written as p(N)an=0 where p(N)=N2+3N ¡4 has roots 1;¡4. Hence, the
general solution is an=C1+C2 � (¡4)n. We can see that both roots have to be involved in the solution (in other
words, C1=/ 0 and C2=/ 0) because an=C1 and an=C2 � (¡4)n are not consistent with the initial conditions.

We conclude that lim
n!1

an+1
an

=¡4 (because j¡4j> j1j).

Example 58. Write the (second-order) RE an+2=4an¡3an+1, with a0=1, a1=2, as a system
of (first-order) recurrences.

Solution. Write bn= an+1.

Then, an+2=4an¡ 3an+1 translates into the first-order system
�
an+1= bn
bn+1=4an¡ 3bn

.

Let an=
�
an
bn

�
. Then, in matrix form, the RE is an+1=

�
0 1
4 ¡3

�
an, with a0=

�
1
2

�
.

Equivalently. Write an=
�

an
an+1

�
. Then we obtain the above system as

an+1=

�
an+1
an+2

�
=

�
an+1

4an¡ 3an+1

�
=

�
0 1
4 ¡3

��
an
an+1

�
=

�
0 1
4 ¡3

�
an; a0=

�
1
2

�
:

Comment. It follows that an =
�
0 1
4 ¡3

�n
a0 =

�
0 1
4 ¡3

�n� 1
2

�
. Solving (systems of) REs is equivalent to

computing powers of matrices!

Comment. We could also write an=
�
an+1
an

�
(with the order of the entries reversed). In that case, the system is

an+1=

�
an+2
an+1

�
=

�
4an¡ 3an+1

an+1

�
=

�
¡3 4
1 0

��
an+1
an

�
=

�
¡3 4
1 0

�
an; a0=

�
2
1

�
:

Comment. Recall that the characteristic polynomial of a matrixM is det(M ¡�I). Compute the characteristic
polynomial of both M =

�
0 1
4 ¡3

�
and M =

�
¡3 4
1 0

�
. In both cases, we get �2+ 3� ¡ 4, which matches the

polynomial p(N) (also called characteristic polynomial!) in the previous example. This will always happen and
explains why both are referred to as the characteristic polynomial.

Example 59. Write an+3¡ 4an+2+ an+1+6an=0 as a system of (first-order) recurrences.

Solution. Write an=

24 an
an+1
an+2

35. Then we obtain the system

an+1=

24 an+1
an+2
an+3

35=
24 an+1

an+2
4an+2¡ an+1¡ 6an

35=
24 0 1 0

0 0 1
¡6 ¡1 4

3524 an
an+1
an+2

35=
24 0 1 0

0 0 1
¡6 ¡1 4

35an:
In summary, the RE in matrix form is an+1=Man with M the matrix above.
Important comment. Consequently, an=Mna0.
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Solving systems of recurrence equations

(systems of REs) The unique solution to an+1=Man, a0= c is an=Mnc.

We will say that Mn is the fundamental matrix solution to an+1=Man with a0= I (the identity matrix).
Comment. Note thatMnc is a linear combination of the columns of Mn. In other words, each column of Mn

is a solution to an+1=Man and Mnc is the general solution.
In general, we say that a matrix �n is a matrix solution to an+1 = Man if �n+1 = M�n. �n being a
matrix solution is equivalent to each column of �n being a normal (vector) solution. If the general solution of
an+1=Man can be obtained as the linear combination of the columns of �n, then �n is a fundamental matrix
solution. Above, we observed that �n=Mn is a special fundamental matrix solution.
If this is a bit too abstract at this point, have a look at Example 60 below.

However, at this point, it remains to figure out how to compute Mn. We will actually proceed
the other way around: we construct the general solution of an+1=Man (see the box below) and
then we use that to determine Mn.

To solve an+1=Man, determine the eigenvectors of M .

� Each �-eigenvector v provides a solution: an=v�n [assuming that �=/ 0]

� If there are enough eigenvectors, these combine to the general solution.

Why? If an=v�n for a �-eigenvector v, then an+1=v�n+1 and Man=Mv�n=�v ��n=v�n+1.
Where is this coming from? When solving single linear recurrences, we found that the basic solutions are of the
form crn where r=/ 0 is a root of the characteristic polynomials. To solve an+1=Man, it is therefore natural
to look for solutions of the form an= cr

n (where c=
�
c1
c2

�
). Note that an+1= crn+1= ran.

Plugging into an+1=Man we find crn+1=Mcrn.
Cancelling rn (just a nonzero number!), this simplifies to rc=Mc.
In other words, an= crn is a solution if and only if c is an r-eigenvector of M .

Comment. If there are not enough eigenvectors, then we know what to do as well (at least in principle): instead of
looking only for solutions of the type an=v�n, we also need to look for solutions of the type an=(vn+w)�n.
Note that this can only happen if an eigenvalue is a repeated root of the characteristic polynomial.
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Example 60. Let M =
�
8 ¡10
5 ¡7

�
.

(a) Determine the general solution to an+1=Man.

(b) Determine a fundamental matrix solution to an+1=Man.

(c) Compute Mn.

Solution.

(a) Recall that each �-eigenvector v of M provides us with a solution: an=v�n

We computed in Example 54 that
�
2
1

�
is an eigenvector for �=3, and

�
1
1

�
is an eigenvector for �=¡2.

Hence, the general solution is C1
�
2
1

�
3n+C2

�
1
1

�
(¡2)n.

(b) Note that we can write the general solution as

an=C1
�
2
1

�
3n+C2

�
1
1

�
(¡2)n=

�
2 � 3n (¡2)n
3n (¡2)n

��
C1

C2

�
.

We call �n=
�
2 � 3n (¡2)n
3n (¡2)n

�
the corresponding fundamental matrix (solution).

Note that our general solution is precisely �nc with c=
�
C1

C2

�
.

Observations.

(a) The columns of �n are (independent) solutions of the system.

(b) �n solves the RE itself: �n+1=M�n.
[Spell this out in this example! That �n solves the RE follows from the definition of matrix
multiplication.]

(c) It follows that �n=Mn�0. Equivalently, �n�0
¡1=Mn. (See next part!)

(c) Note that �0=
�
2 1
1 1

�
, so that �0

¡1=
�

1 ¡1
¡1 2

�
. It follows that

Mn=�n�0
¡1=

�
2 � 3n (¡2)n
3n (¡2)n

��
1 ¡1
¡1 2

�
=

�
2 � 3n¡ (¡2)n ¡2 � 3n+2(¡2)n
3n¡ (¡2)n ¡3n+2(¡2)n

�
:

Check. Let us verify the formula for Mn in the cases n=0 and n=1:

M0=
�
2¡ 1 ¡2+2
1¡ 1 ¡1+2

�
=

�
1 0
0 1

�
M1=

�
2 � 3¡ (¡2) ¡2 � 3+2(¡2)
3¡ (¡2) ¡3+ 2(¡2)

�
=

�
8 ¡10
5 ¡7

�

We just saw that being able to compute matrix powers is equivalent to solving systems of recur-
rences. Indeed, we can use this fact to compute matrix powers.

(a way to compute powers of a matrix M)
Compute a fundamental matrix solution �n of an+1=Man.

Then Mn=�n�0
¡1.

If you have taken linear algebra classes, you may have learned that matrix powers Mn can be computed by
diagonalizing the matrixM . The latter hinges on computing eigenvalues and eigenvectors of M as well. Compare
the two approaches!
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Sketch of Lecture 10 Fri, 9/13/2024

(systems of REs) The unique solution to an+1=Man, a0= c is an=Mnc.

� Here, Mn is the fundamental matrix solution to an+1=Man, a0= I (with I the identity matrix).

� If �n is any fundamental matrix solution to an+1=Man, then Mn=�n�0
¡1.

� To construct a fundamental matrix solution �n, we compute eigenvectors:
Given a �-eigenvector v, we have the corresponding solution an=v�n.
If there are enough eigenvectors, we can collect these as columns to obtain �n.

Why? Since �n is a fundamental matrix solution, �n+1=M�n and so �n=Mn�0. Hence, Mn=�n�0
¡1.

Example 61. (review) Write the (second-order) RE an+2=an+1+2an, with a0=0, a1=1, as
a system of (first-order) recurrences.

Solution. If an=
�

an
an+1

�
, then an+1=

�
an+1
an+2

�
=

�
an+1

an+1+2an

�
=

�
0 1
2 1

�
an with a0=

�
0
1

�
.

Example 62. Let M =
�
0 1
2 1

�
.

(a) Determine the general solution to an+1=Man.

(b) Determine a fundamental matrix solution to an+1=Man.

(c) Compute Mn.

(d) Solve an+1=Man, a0=
�
0
1

�
.

Solution.

(a) Recall that each �-eigenvector v of M provides us with a solution: namely, an=v�n.

The characteristic polynomial is: det(A¡�I)=det
��
¡� 1
2 1¡�

��
=�2¡�¡ 2= (�¡ 2)(�+1).

Hence, the eigenvalues are �=2 and �=¡1.

� �=2: Solving
�
¡2 1
2 ¡1

�
v=0, we find that v=

�
1
2

�
is an eigenvector for �=2.

� �=¡1: Solving
�
1 1
2 2

�
v=0, we find that v=

�
¡1
1

�
is an eigenvector for �=¡1.

Hence, the general solution is C1
�
1
2

�
2n+C2

�
¡1
1

�
(¡1)n.

(b) Note that C1
�
1
2

�
2n+C2

�
¡1
1

�
(¡1)n=

�
2n ¡(¡1)n
2 � 2n (¡1)n

��
C1

C2

�
.

Hence, a fundamental matrix solution is �n=
�

2n ¡(¡1)n
2 � 2n (¡1)n

�
.

Comment. Other choices are possible and natural. For instance, the order of the two columns is based
on our choice of starting with �=2. Also, the columns can be scaled by any constant (for instance, using
¡v instead of v for �=¡1 above, we end up with the same�n but with the second column scaled by¡1).
In general, if �n is a fundamental matrix solution, then so is �nC where C is an invertible 2� 2 matrix.

(c) We computeMn=�n�0
¡1 using �n=

�
2n ¡(¡1)n
2 � 2n (¡1)n

�
. Since �0

¡1=
�
1 ¡1
2 1

�¡1
=
1

3

�
1 1
¡2 1

�
, we have

Mn=�n�0
¡1=

�
2n ¡(¡1)n
2 � 2n (¡1)n

�
1
3

�
1 1
¡2 1

�
=
1
3

�
2n+2(¡1)n 2n¡ (¡1)n
2 � 2n¡ 2(¡1)n 2 � 2n+(¡1)n

�
:

(d) an=Mna0=
1

3

�
2n+2(¡1)n 2n¡ (¡1)n
2 � 2n¡ 2(¡1)n 2 � 2n+(¡1)n

��
0
1

�
=
1

3

�
2n¡ (¡1)n
2 � 2n+(¡1)n

�
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Alternative solution of the first part. We saw in Example 61 that this system can be obtained from an+2=

an+1+2an if we set a=
�

an
an+1

�
. In Example 53, we found that this RE has solutions an=2n and an=(¡1)n.

Correspondingly, an+1=
�
0 1
2 1

�
an has solutions an=

"
2n

2n+1

#
and an=

"
(¡1)n
(¡1)n+1

#
.

These combine to the general solution C1
"

2n

2n+1

#
+C2

"
(¡1)n
(¡1)n+1

#
(equivalent to our solution above).

Alternative for last part. Solve the RE from Example 61 to find an=
1

3
(2n¡ (¡1)n). The above is an=

�
an
an+1

�
.

Sage. Once we are comfortable with these computations, we can let Sage do them for us.

>>> M = matrix([[0,1],[2,1]])

>>> M^2�
2 1
2 3

�
Verify that this matrix matches what our formula for Mn produces for n=2. In order to reproduce the general
formula for Mn, we need to first define n as a symbolic variable:

>>> n = var('n')

>>> M^n0BB@ 1
3
� 2n+ 2

3
(¡1)n 1

3
� 2n¡ 1

3
(¡1)n

2
3
� 2n¡ 2

3
(¡1)n 2

3
� 2n+ 1

3
(¡1)n

1CCA
Note that this indeed matches our earlier formula. Can you see how we can read off the eigenvalues and
eigenvectors of M from this formula for Mn? Of course, Sage can readily compute these for us directly using,
for instance, M.eigenvectors_right(). Try it! Can you interpret the output?
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Sketch of Lecture 11 Mon, 9/16/2024

Example 63. If M =

266664
3
¡2

5
1

377775, what is Mn?

Comment. Entries that are not printed are meant to be zero (to make the structure of the 4� 4 matrix more
visibly transparent).

Solution. Mn=

266664
3n

(¡2)n
5n

1

377775
If this isn't clear to you, multiply out M2. What happens?

Preview: The corresponding system of differential equations

Review. Check out Examples 61 and 62 again.

Example 64. Write the (second-order) initial value problem y 00= y 0+2y, y(0)=0, y 0(0)=1 as
a first-order system.

Solution. If y=
�
y
y 0

�
, then y 0=

�
y 0

y 00

�
=

�
y 0

y 0+2y

�
=

�
0 1
2 1

��
y
y 0

�
=

�
0 1
2 1

�
y with y(0)=

�
0
1

�
.

This is exactly how we proceeded in Example 61.

Homework. Solve this IVP to find y(x)= 1

3
(e2x¡ e¡x). Then compare with the next example.

Example 65. Let M =
�
0 1
2 1

�
.

(a) Determine the general solution to y 0=My.

(b) Determine a fundamental matrix solution to y 0=My.

(c) Solve y 0=My, y(0)=
�
0
1

�
.

Solution. In Example 62, we only need to replace 2n by e2x (root 2) and (¡1)n by e¡x (root ¡1)!

(a) The general solution is C1
�
1
2

�
e2x+C2

�
¡1
1

�
e¡x.

(b) A fundamental matrix solution is �(x)=
"

e2x ¡e¡x
2 � e2x e¡x

#
.

(c) y(x)= 1

3

"
e2x¡ e¡x
2 � e2x+ e¡x

#

Preview. The special fundamental matrix Mn will be replaced by eMx, the matrix exponential.
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Example 66. (homework)

(a) Write the recurrence an+3¡ 4an+2+an+1+6an=0 as a system an+1=Man of (first-
order) recurrences.

(b) Determine a fundamental matrix solution to an+1=Man.

(c) Compute Mn.

Solution.

(a) If an=

24 an
an+1
an+2

35, then the RE becomes an+1=Man with M =

24 0 1 0
0 0 1
¡6 ¡1 4

35.
(b) Because we started with a single (third-order) equation, we can avoid computing eigenvectors and eigen-

values (indeed, we will find these as a byproduct).

By factoring the characteristic equation N3¡ 4N2+N +6=(N ¡ 3)(N ¡ 2)(N +1), we find that the
characteristic roots are 3; 2;¡1 (these are also precisely the eigenvalues of M).
Hence, an=C1 � 3n+C2 � 2n+C3 � (¡1)n is the general solution to the initial RE.

Correspondingly, a fundamental matrix solution of the system is �n=

24 3n 2n (¡1)n
3 � 3n 2 � 2n ¡(¡1)n
9 � 3n 4 � 2n (¡1)n

35.
Note. This tells us that

24 1
3
9

35 is a 3-eigenvector,
24 1
2
4

35a 2-eigenvector, and
24 1
¡1
1

35a¡1-eigenvector of M .

(c) Since �n+1=M�n, we have �n=Mn�0 so that Mn=�n�0
¡1. This allows us to compute that:

Mn=
1
12

24 ¡6 � 3n+ 12 � 2n+6(¡1)n ¡3 � 3n+8 � 2n¡ 5(¡1)n 3 � 3n¡ 4 � 2n+(¡1)n
¡18 � 3n+ 24 � 2n¡ 6(¡1)n ::: :::
¡54 � 3n+ 48 � 2n+6(¡1)n ::: :::

35

Systems of differential equations

Example 67. (review) Write the (second-order) differential equation y 00=2y 0+ y as a system
of (first-order) differential equations.

Solution. If y=
�
y
y 0

�
, then y 0=

�
y 0

y 00

�
=

�
y 0

2y 0+ y

�
=

�
0 1
1 2

��
y
y 0

�
=

�
0 1
1 2

�
y. For short, y 0=

�
0 1
1 2

�
y.

Comment. Hence, we care about systems of differential equations, even if we work with just one function.

Example 68. Write the (third-order) differential equation y 000 = 3y 00 ¡ 2y 0 + y as a system of
(first-order) differential equations.

Solution. If y=

2664 y
y 0

y 00

3775, then y 0=24 y 0

y 00

y 000

35=
24 y 0

y 00

3y 00¡ 2y 0+ y

35=
24 0 1 0
0 0 1
1 ¡2 3

3524 y
y 0

y 00

35=
24 0 1 0
0 0 1
1 ¡2 3

35y.
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We can solve the system y 0=My exactly as we solved an+1=Man.

The only difference is that we replace each �n (for characteristic root / eigenvalue �) with e�x. In fact, as shown
in the examples below, we can translate back and forth at any stage.

To solve y 0=My, determine the eigenvectors of M .

� Each �-eigenvector v provides a solution: y(x)=ve�x

� If there are enough eigenvectors, these combine to the general solution.

(systems of DEs) The unique solution to y 0=My, y(0)= c is y(x)= eMxc.

� Here, eMx is the fundamental matrix solution to y 0=My, y(0)= I (with I the identity matrix).

� If �(x) is any fundamental matrix solution to y 0=My, then eMx=�(x)�(0)¡1.

� To construct a fundamental matrix solution �(x), we compute eigenvectors:

Given a �-eigenvector v, we have the corresponding solution y(x)=ve�x.
If there are enough eigenvectors, we can collect these as columns to obtain �(x).

Note. We are defining the matrix exponential eMx as the solution to an IVP. This is equivalent to how one
can define the ordinary exponential ex as the solution to y 0= y, y(0)=1.
[In a little bit, we will also discuss how to think about the matrix exponential eMx using power series.]

Comment. If there are not enough eigenvectors, then we knowwhat to do (at least in principle): instead of looking
only for solutions of the type y(x)=ve�x, we also need to look for solutions of the type y(x)= (vx+w)e�x.
Note that this can only happen if an eigenvalue is a repeated root of the characteristic polynomial.

Important. Compare this to our method of solving systems of REs and for computing matrix powersMn. Note
that the above conclusion about systems of DEs can be deduced along the same lines as what we did for REs:

� If �(x) is a fundamental matrix solution, then so is 	(x)=�(x)C for every constant matrix C. (Why?!)
Therefore, 	(x)=�(x)�(0)¡1 is a fundamental matrix solution with 	(0)=�(0)�(0)¡1= I.

But eMx is defined to be the unique such solution, so that 	(x)= eMx.

� Let us look for solutions of y 0=My of the form y(x)=ve�x. Note that y 0=�ve�x=�y.
Plugging into y 0=My, we find �y=My.

In other words, y(x)=ve�x is a solution if and only if v is a �-eigenvector of M .

Observe how the next example proceeds along the same lines as Example 60.

Important. In fact, we can translate back and forth (without additional computations) by simply replacing 3n

and (¡2)n by e3x and e¡2x.

Example 69. (homework) Let M =
�
8 ¡10
5 ¡7

�
.

(a) Determine the general solution to y 0=My.

(b) Determine a fundamental matrix solution to y 0=My.

(c) Compute eMx.

(d) Solve the initial value problem y 0=My with y(0)=
�
0
1

�
.
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Solution. (See Example 60 for more details on the analogous computations.)

(a) Recall that each �-eigenvector v of M provides us with a solution: namely, y(x)=ve�x.

We computed earlier that
�
2
1

�
is an eigenvector for �=3, and

�
1
1

�
is an eigenvector for �=¡2.

Hence, the general solution is C1
�
2
1

�
e3x+C2

�
1
1

�
e¡2x.

(b) The corresponding fundamental matrix solution is �(x)=

"
2 � e3x e¡2x

e3x e¡2x

#
.

[Note that our general solution is precisely �(x)
�
C1

C2

�
.]

(c) Since �(0)=
�
2 1
1 1

�
, we have �(0)¡1=

�
1 ¡1
¡1 2

�
. It follows that

eMx=�(x)�(0)¡1=

"
2 � e3x e¡2x

e3x e¡2x

#�
1 ¡1
¡1 2

�
=

"
2 � e3x¡ e¡2x ¡2 � e3x+2e¡2x

e3x¡ e¡2x ¡e3x+2e¡2x

#
:

Check. Let us verify the formula for eMx in the simple case x=0: eM0=
�
2¡ 1 ¡2+2
1¡ 1 ¡1+2

�
=

�
1 0
0 1

�

(d) The solution to the IVP is y(x)= eMx
�
0
1

�
=

"
¡2 � e3x+2e¡2x

¡e3x+2e¡2x

#
(the second column of eMx).

Sage. We can compute the matrix exponential in Sage as follows:

>>> M = matrix([[8,-10],[5,-7]])

>>> exp(M*x) 
(2 e(5 x)¡ 1) e(¡2 x) ¡2 (e(5 x)¡ 1) e(¡2 x)

(e(5 x)¡ 1) e(¡2 x) ¡(e(5 x)¡ 2) e(¡2 x)

!
Note that this indeed matches the result of our computation.
[By the way, the variable x is pre-defined as a symbolic variable in Sage. That's why, unlike for n in the
computation of Mn, we did not need to use x = var('x') first.]
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Sketch of Lecture 12 Wed, 9/18/2024

Example 70. (review) Write the (third-order) differential equation y 000 = 3y 00 ¡ 2y 0 + y as a
system of (first-order) differential equations.

Solution. If y=

2664 y
y 0

y 00

3775, then y 0=24 y 0

y 00

y 000

35=
24 y 0

y 00

3y 00¡ 2y 0+ y

35=
24 0 1 0
0 0 1
1 ¡2 3

3524 y
y 0

y 00

35=
24 0 1 0
0 0 1
1 ¡2 3

35y.

Example 71. Consider the following system of (second-order) initial value problems:

y1
00=2y10 ¡ 3y20 +7y2
y2
00=4y10 + y2

0 ¡ 5y1
y1(0)=2; y10(0)= 3; y2(0)=¡1; y20(0)= 1

Write it as a first-order initial value problem in the form y 0=My, y(0)= y0.

Solution. If y=

26666664
y1
y2
y1
0

y2
0

37777775, then y 0=
266664
y1
0

y2
0

y1
00

y2
00

377775=
266664

y1
0

y2
0

2y1
0¡ 3y20+7y2

4y1
0+ y2

0¡ 5y1

377775=
266664

0 0 1 0
0 0 0 1
0 7 2 ¡3
¡5 0 4 1

377775
266664
y1
y2
y1
0

y2
0

377775=
266664

0 0 1 0
0 0 0 1
0 7 2 ¡3
¡5 0 4 1

377775y.

For short, the system translates into y 0=

266664
0 0 1 0
0 0 0 1
0 7 2 ¡3
¡5 0 4 1

377775y with y(0)=

266664
2
¡1
3
1

377775.

Example 72. Suppose that eMx= 1

10

"
ex+9e2x 3ex¡ 3e2x
3ex¡ 3e2x 9ex+ e2x

#
.

(a) Without doing any computations, determine Mn.

(b) What is M?

(c) Without doing any computations, determine the eigenvalues and eigenvectors of M .

(d) From these eigenvalues and eigenvectors, write down a simple fundamental matrix solution
to y 0=My.

(e) From that fundamental matrix solution, how can we compute eMx? (If we didn't know it already . . . )

(f) Having computed eMx, what is a simple check that we can (should!) make?
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Solution.

(a) Since ex and e2x correspond to eigenvalues 1 and 2, we just need to replace these by 1n=1 and 2n:

Mn=
1
10

�
1+9 � 2n 3¡ 3 � 2n
3¡ 3 � 2n 9+2n

�

(b) We can simply set n=1 in our formula for Mn, to get M =
1

10

�
19 ¡3
¡3 11

�
.

(c) The eigenvalues are 1 and 2 (because eMx contains the exponentials ex and e2x).

Looking at the coefficients of ex in the first column of eMx, we see that
�
1
3

�
is a 1-eigenvector.

[We can also look the second column of eMx, to obtain
�
3
9

�
which is a multiple and thus equivalent.]

Likewise, by looking at the coefficients of e2x, we see that
�

9
¡3

�
or, equivalently,

�
¡3
1

�
is a 2-eigenvector.

Comment. To see where this is coming from, keep in mind that, associated to a �-eigenvector v, we
have the corresponding solution y(x) = ve�x of the DE y 0=My. On the other hand, the columns of
eMx are solutions to that DE and, therefore, must be linear combinations of these ve�x.

(d) From the eigenvalues and eigenvectors, we know that
�
1
3

�
ex and

�
¡3
1

�
e2x are solutions (and that the

general solutions consists of the linear combinations of these two).

Selecting these as the columns, we obtain the fundamental matrix solution �(x)=
"
ex ¡3e2x
3ex e2x

#
.

Comment. The fundamental refers to the fact that the columns combine to the general solution.
The matrix solution means that �(x) itself satisfies the DE: namely, we have �0=M�. That this is the
case is a consequence of matrix multiplication (namely, say, the second column of M� is defined to be
M times the second column of �; but that column is a vector solution and therefore solves the DE).

(e) We can compute eMx as eMx=�(x)�(0)¡1.

If �(x)=
"

ex ¡3e2x
3ex e2x

#
, then �(0)=

�
1 ¡3
3 1

�
and, hence, �(0)¡1= 1

10

�
1 3
¡3 1

�
. It follows that

eMx=�(x)�(0)¡1=

"
ex ¡3e2x
3ex e2x

#
1
10

�
1 3
¡3 1

�
=

1
10

"
ex+9e2x 3ex¡ 3e2x
3ex¡ 3e2x 9ex+ e2x

#
:

(f) We can check that eMx equals the identity matrix if we set x=0:

1
10

"
ex+9e2x 3ex¡ 3e2x
3ex¡ 3e2x 9ex+ e2x

#
 x=0 1

10

�
1+9 3¡ 3
3¡ 3 9+1

�
=

�
1 0
0 1

�
This check does not require much effort and can even be done in our head while writing down eMx. There
is really no excuse for not doing it!
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Example 73. (homework) Let M =
�
¡1 6
¡1 4

�
.

(a) Determine the general solution to y 0=My.

(b) Determine a fundamental matrix solution to y 0=My.

(c) Compute eMx.

(d) Solve the initial value problem y 0=My with y(0)=
�
1
1

�
.

(e) Compute Mn.

(f) Solve an+1=Man with a0=
�
1
1

�
.

Solution.

(a) We determine the eigenvectors of M . The characteristic polynomial is:

det(M ¡�I)=det
��
¡1¡� 6
¡1 4¡�

��
=(¡1¡�)(4¡�)+ 6=�2¡ 3�+2= (�¡ 1)(�¡ 2)

Hence, the eigenvalues are �=1 and �=2.

� �=1: Solving
�
¡2 6
¡1 3

�
v=0, we find that v=

�
3
1

�
is an eigenvector for �=1.

� �=2: Solving
�
¡3 6
¡1 2

�
v=0, we find that v=

�
2
1

�
is an eigenvector for �=2.

Hence, the general solution is C1
�
3
1

�
ex+C2

�
2
1

�
e2x.

(b) The corresponding fundamental matrix solution is �=
"
3ex 2e2x

ex e2x

#
.

(c) Note that �(0)=
�
3 2
1 1

�
, so that �(0)¡1=

�
1 ¡2
¡1 3

�
. It follows that

eMx=�(x)�(0)¡1=

"
3ex 2e2x

ex e2x

#�
1 ¡2
¡1 3

�
=

"
3ex¡ 2e2x ¡6ex+6e2x

ex¡ e2x ¡2ex+3e2x

#
:

(d) The solution to the IVP is y(x)= eMx
�
1
1

�
=

"
3ex¡ 2e2x ¡6ex+6e2x

ex¡ e2x ¡2ex+3e2x

#�
1
1

�
=

"
¡3ex+4e2x

¡ex+2e2x

#
.

Note. If we hadn't already computed eMx, we would use the general solution and solve for the appropriate
values of C1 and C2. Do it that way as well!

(e) From the first part, it follows that an+1=Man has general solution C1
�
3
1

�
+C2

�
2
1

�
2n.

(Note that 1n=1.)

The corresponding fundamental matrix solution is �n=
�
3 2 � 2n
1 2n

�
.

As above, �0=
�
3 2
1 1

�
, so that �(0)¡1=

�
1 ¡2
¡1 3

�
and

Mn=�n�0
¡1=

�
3 2 � 2n
1 2n

��
1 ¡2
¡1 3

�
=

�
3¡ 2 � 2n ¡6+6 � 2n
1¡ 2n ¡2+3 � 2n

�
:

Important. Compare with our computation for eMx. Can you see how this was basically the same
computation? Write down Mn directly from eMx.

(f) The (unique) solution is an=Mn
�
1
1

�
=

�
3¡ 2 � 2n ¡6+6 � 2n
1¡ 2n ¡2+3 � 2n

��
1
1

�
=

�
¡3+4 � 2n
¡1+2 � 2n

�
.

Important. Again, compare with the earlier IVP! Without work, we can write down one from the other.

Armin Straub
straub@southalabama.edu

31



Sketch of Lecture 13 Fri, 9/20/2024

Another perspective on the matrix exponential

Review. We achieved the milestone to introduce a matrix exponential in such a way that we
can treat a system of DEs, say y 0=My with y(0) = c, just as if the matrix M was a number:
namely, the unique solution is simply y= eMxc.
The price to pay is that the matrix eMx requires some work to actually compute (and proceeds by first determining
a different matrix solution �(x) using eigenvectors and eigenvalues). We offer below another way to think about
eMx (using Taylor series).

(exponential function) ex is the unique solution to y 0= y, y(0)= 1.

From here, it follows that ex=1+x+ x2

2!
+ x3

3!
+ :::.

The latter is the Taylor series for ex at x=0 that we have seen in Calculus II.
Important note. We can actually construct this infinite sum directly from y0= y and y(0)=1.

Indeed, observe how each term, when differentiated, produces the term before it. For instance, d

dx

x3

3!
=
x2

2!
.

Review. We defined the matrix exponential eMx as the unique matrix solution to the IVP

y 0=My ; y(0)= I:

We next observe that we can also make sense of the matrix exponential eMx as a power series.

Theorem 74. Let M be n�n. Then the matrix exponential satisfies

eM = I +M + 1
2!
M2+ 1

3!
M3+ :::

Proof. Define �(x)= I +Mx+
1

2!
M2x2+

1

3!
M3x3+ :::

�0(x) =
d
dx

�
I +Mx+

1
2!
M2x2+

1
3!
M3x3+ :::

�
= 0+M +M2x+

1
2!
M3x2+ :::=M�(x):

Clearly, �(0)= I. Therefore, �(x) is the fundamental matrix solution to y 0=My, y(0)= I.

But that's precisely how we defined eMx earlier. It follows that �(x)= eMx. Now set x=1. �

Example 75. If A=
�
2 0
0 5

�
, then A100=

"
2100 0

0 5100

#
.

Example 76. If A=
�
2 0
0 5

�
, then eA=

�
1 0
0 1

�
+

�
2 0
0 5

�
+ 1

2!

"
22 0

0 52

#
+ ���=

"
e2 0

0 e5

#
.

Clearly, this works to obtain eD for every diagonal matrix D.

In particular, for Ax=
�
2x 0
0 5x

�
, eAx=

�
1 0
0 1

�
+

�
2x 0
0 5x

�
+ 1

2!

"
(2x)2 0

0 (5x)2

#
+ ���=

"
e2x 0

0 e5x

#
.

The following is a preview of how the matrix exponential deals with repeated characteristic roots.

Example 77. Determine eAx for A=
�
0 1
0 0

�
.

Solution. If we compute eigenvalues, we find that we get � = 0; 0 (multiplicity 2) but there is only one 0-
eigenvector (up to multiples). This means we are stuck with this approach�however, see next extra section how
we could still proceed.

The key here is to observe that A2=
�
0 0
0 0

�
. It follows that eAx= I +Ax=

�
1 0
0 1

�
+

�
0 x
0 0

�
=

�
1 x
0 1

�
.
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Extra: The case of repeated eigenvalues with too few eigenvectors

Review. To construct a fundamental matrix solution �(x) to y 0=My, we compute eigenvectors:

Given a �-eigenvector v, we have the corresponding solution y(x)=ve�x.
If there are enough eigenvectors, we can collect these as columns to obtain �(x).
The next example illustrates how to proceed if there are not enough eigenvectors.
In that case, instead of looking only for solutions of the type y(x) = ve�x, we also need to look for solutions
of the type y(x)= (vx+w)e�x. This can only happen if an eigenvalue is a repeated root of the characteristic
polynomial.

Example 78. Let M =
�

8 4
¡1 4

�
.

(a) Determine the general solution to y 0=My.

(b) Determine a fundamental matrix solution to y 0=My.

(c) Compute eMx.

(d) Solve the initial value problem y 0=My with y(0)=
�
1
0

�
.

Solution.

(a) We determine the eigenvectors of M . The characteristic polynomial is:

det(M ¡�I)=det
��

8¡� 4
¡1 4¡�

��
=(8¡�)(4¡�)+ 4=�2¡ 12�+ 36=(�¡ 6)(�¡ 6)

Hence, the eigenvalues are �=6; 6 (meaning that 6 has multiplicity 2).

� To find eigenvectors v for �=6, we need to solve
�

2 4
¡1 ¡2

�
v=0.

Hence, v=
�
¡2
1

�
is an eigenvector for �=6. There is no independent second eigenvector.

� We therefore search for a solution of the form y(x)= (vx+w)e�x with �=6.

y0(x)= (�vx+�w+v)e�x=
!
My=(Mvx+Mw)e�x

Equating coefficients of x, we need �v=Mv and �w+v=Mw.

Hence, v must be an eigenvector (which we already computed); we choose v=
�
¡2
1

�
.

[Note that any multiple of y(x) will be another solution, so it doesn't matter which multiple of
�
¡2
1

�
we choose.]

�w+v=Mw or (M ¡�)w=v then becomes
�

2 4
¡1 ¡2

�
w=

�
¡2
1

�
.

One solution is w=
�
¡1
0

�
. [We only need one.]

Hence, the general solution is C1
�
¡2
1

�
e6x+C2

��
¡2
1

�
x+

�
¡1
0

��
e6x.

(b) The corresponding fundamental matrix solution is �=
"
¡2e6x ¡(2x+1)e6x

e6x xe6x

#
.

(c) Note that �(0)=
�
¡2 ¡1
1 0

�
, so that �(0)¡1=

�
0 1
¡1 ¡2

�
. It follows that

eMx=�(x)�(0)¡1=

"
¡2e6x ¡(2x+1)e6x

e6x xe6x

#�
0 1
¡1 ¡2

�
=

"
(2x+1)e6x 4xe6x

¡xe6x ¡(2x¡ 1) e6x

#
:

(d) The solution to the IVP is y(x)= eMx
�
1
0

�
=

"
(2x+1)e6x 4xe6x

¡xe6x ¡(2x¡ 1) e6x

#�
1
0

�
=

"
(2x+1)e6x

¡xe6x

#
.
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Phase portraits and phase plane analysis
Our goal is to visualize the solutions to systems of equations. This works particularly well in the
case of systems of two differential equations.
A system of two differential equations that can be written as

dx
dt

= f(x; y)

dy
dt

= g(x; y)

is called autonomous because it doesn't depend on the independent variable t.
Comment. Can you show that if x(t) and y(t) are a pair of solutions, then so is the pair x(t+ t0) and y(t+ t0)?

We can visualize solutions to such a system by plotting the points (x(t); y(t)) for increasing values
of t so that we get a curve (and we can attach an arrow to indicate the direction we're flowing
along that curve). Each such curve is called the trajectory of a solution.
Even better, we can do such a phase portrait without solving to get a formula for (x(t); y(t))!
That's because we can combine the two equations to get

dy
dx

= g(x; y)
f(x; y)

;

which allows us to make a slope field! If a trajectory passes through a point (x; y), then we know

that the slope at that point must be dy

dx
= g(x; y)

f(x; y)
.

This allows us to sketch trajectories. However, it does not tell us everything about the corresponding solution
(x(t); y(t)) because we don't know at which times t the solution passes through the points on the curve.
However, we can visualize the speed with which a solution passes through the trajectory by attaching to a point
(x; y) not only the slope g(x; y)

f(x; y)
but the vector

�
f(x; y)
g(x; y)

�
. That vector has the same direction as the slope but

it also tells us in which direction we are moving and how fast (by its magnitude).

Example 79. Sketch some trajectories for the system dx

dt
=x � (y¡ 1), dy

dt
= y � (x¡ 1).

Solution. Let's look at the point (x; y)= (2;¡1), for instance. Then the DEs tell us that dx
dt
=x � (y¡1)=¡4

and dy

dt
= y � (x¡ 1)=¡1. We therefore attach the vector

�
dx

dt
;
dy

dt

�
=(¡4;¡1) to (x; y)= (2;¡1).

Note that if we use dy

dx
=

y � (x¡ 1)
x � (y¡ 1) directly, we find the slope dy

dx
=
¡1
¡4 =

1

4
. This is slightly less information

because it doesn't tell us that we are moving �left and down� as the arrows in the following plot indicate:

2 1 0 1 2

2

1

0

1

2

Armin Straub
straub@southalabama.edu

34



Comment. In this example, we can solve the slope-field equation dy

dx
=

y(x¡ 1)
x(y¡ 1) using separation of variables.

Do it! We end up with the implicit solutions y¡ lnjy j=x¡ lnjxj+C.
If we plot these curves for various values of C, we get trajectories in the plot above. However, note that none
of this solving is needed for plotting by itself.
Sage. We can make Sage create such phase portraits for us!

>>> x,y = var('x y')

>>> streamline_plot((x*(y-1),y*(x-1)), (x,-3,3), (y,-3,3))

Equilibrium solutions

(x0; y0) is an equilibrium point of the system dx

dt
= f(x; y), dy

dt
= g(x; y) if

f(x0; y0)= 0 and g(x0; y0)= 0:

In that case, we have the constant (equilibrium) solution x(t)=x0, y(t)= y0.

Comment. Equilibrium points are also called critical points (or stationary points or rest points).

In a phase portrait, the equilibrium solutions are just a single point.
Recall that every other solution (x(t); y(t)) corresponds to a curve (parametrized by t), called the trajectory of
the solution (and we can adorn it with an arrow that indicates the direction of the �flow� of the solution).

We can learn a lot from how solutions behave near equilibrium points.

An equilibrium point is called:

� stable if all nearby solutions remain close to the equilibrium point;

� asymptotically stable if all nearby solutions remain close and �flow into� the equilibrium;

� unstable if it is not stable (some nearby solutions �flow away� from the equilibrium).

Comment. Note that asymptotically stable is a stronger condition than stable. A typical example of a stable,
but not asymptotically stable, equilibrium point is one where nearby solutions loop around the equilibrium point
without coming closer to it.
Advanced comment. For asymptotically stable, we kept the condition that nearby solutions remain close because
there are �weird� instances where trajectories come arbitrarily close to the equilibrium, then �flow away� but
eventually �flow into� (this would constitute an unstable equilibrium point).

Example 80. (cont'd) Consider again the system dx

dt
=x � (y¡ 1), dy

dt
= y � (x¡ 1).

(a) Determine the equilibrium points.

(b) Using the phase portrait from Example 79, classify the stability of each equilibrium point.

Solution.

(a) We solve x(y¡ 1)=0 (that is, x=0 or y=1) and y(x¡ 1)= 0 (that is, x=1 or y=0).
We conclude that the equilibrium points are (0; 0) and (1; 1).

(b) (0; 0) is asymptotically stable (because all nearby solutions �flow into� (0; 0)).
(1; 1) is unstable (because some nearby solutions �flow away� from (1; 1)).
Comment. We will soon learn how to determine stability without the need for a plot.
Comment. If you look carefully at the phase portrait near (1; 1), you can see that certain solutions get
attracted at first to (1; 1) and then �flow away� at the last moment. This suggests that there is a single
trajectory which actually �flows into� (1; 1). This constellation is typical and is called a saddle point.
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Sketch of Lecture 14 Mon, 9/23/2024

Phase portraits of autonomous linear differential equations

Example 81. Consider the system dx

dt
= y¡ 5x, dy

dt
=4x¡ 2y.

(a) Determine the general solution.

(b) Make a phase portrait. Can you connect it with the general solution?

(c) Determine all equilibrium points and their stability.

Solution.

(a) Note that we can write this is in matrix form as
�
x
y

�0
=M

�
x
y

�
with M =

�
¡5 1
4 ¡2

�
.

M has ¡1-eigenvector
�
1
4

�
as well as ¡6-eigenvector

�
¡1
1

�
.

Hence, the general solution is
�
x(t)
y(t)

�
=C1

�
1
4

�
e¡t+C2

�
¡1
1

�
e¡6t.

(b) We can have Sage make such a plot for us:

>>> x,y = var('x y')
streamline_plot((-5*x+y,4*x-2*y), (x,-4,4), (y,-4,4))

Question. In our plot, we also highlighted two lines through
the origin. Can you explain their significance?
Explanation. The lines correspond to the special solutions
C1

�
1
4

�
e¡t (green) and C2

�
¡1
1

�
e¡6t (orange). For each,

the trajectories consist of points that are multiples of the
vectors

�
1
4

�
and

�
¡1
1

�
, respectively.

Note that each such solution starts at a point on one of
the lines and then �flows� into the origin. (Because e¡t and
e¡6t approach zero for large t.)

4 2 0 2 4

4

2

0

2

4

Question. Consider a point like (4; 4). Can you explain why the trajectory through that point doesn't go
somewhat straight to (0; 0) but rather flows nearly parallel the orange line towards the green line?

Explanation. A solution through (4; 4) is of the form
�
x(t)
y(t)

�
= C1

�
1
4

�
e¡t + C2

�
¡1
1

�
e¡6t (like any

other solution). Note that, if we increase t, then e¡6t becomes small much faster than e¡t.

As a consequence, we quickly get
�
x(t)
y(t)

�
�C1

�
1
4

�
e¡t, where the right-hand side is on the green line.

(c) The only equilibrium point is (0; 0) and it is asymptotically stable.
We can see this from the phase portrait but we can also determine it from the DE and our solution: first,
solving y¡ 5x=0 and 4x¡ 2y=0 we only get the unique solution x=0; y=0, which means that only
(0;0) is an equilibrium point. On the other hand, the general solution shows that every solution approaches
(0; 0) as t!1 because both e¡t and e¡6t approach 0.
In general. This is typical: if both eigenvalues are negative, then the equilibrium is asymptotically stable.
If at least one eigenvalue is positive, then the equilibrium is unstable.
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Example 82. Consider the system dx

dt
=5x¡ y, dy

dt
=2y¡ 4x.

(a) Determine the general solution.

(b) Make a phase portrait.

(c) Determine all equilibrium points and their stability.

Solution.

(a) Note that we can write this is in matrix form as
�
x
y

�0
=M

�
x
y

�
withM =¡

�
¡5 1
4 ¡2

�
, where the matrix

is exactly ¡1 times what it was in Example 81.

Consequently, M has 1-eigenvector
�
1
4

�
as well as 6-eigenvector

�
¡1
1

�
. (Can you explain why the

eigenvectors are the same and the eigenvalues changed sign?)

Thus, the general solution is
�
x(t)
y(t)

�
=C1

�
1
4

�
et+C2

�
¡1
1

�
e6t.

(b) We again have Sage make the plot for us:

>>> x,y = var('x y')
streamline_plot((5*x-y,-4*x+2*y), (x,-4,4), (y,-4,4))

4 2 0 2 4

4

2

0

2

4

Note that the phase portrait is identical to the one in Example 81, except that the arrows are reversed.

(c) The only equilibrium point is (0; 0) and it is unstable.

We can see this from the phase portrait but we can also see it readily from our general solution
�
x(t)
y(t)

�
=

C1
�
1
4

�
et+C2

�
¡1
1

�
e6t because et and e6t go to 1 as t!1.

In general. If at least one eigenvalue is positive, then the equilibrium is unstable.

Example 83. Suppose the system dx

dt
= f(x; y), dy

dt
= g(x; y) has general solution

�
x(t)
y(t)

�
=

C1
�
1
4

�
e¡t+C2

�
¡1
1

�
e6t. Determine all equilibrium points and their stability.

Solution. Clearly, the only constant solution is the zero solution
�
x(t)
y(t)

�
=

�
0
0

�
. Equivalently, the only equilibrium

point is (0; 0).

Since e6t!1 as t!1, we conclude that the equilibrium is unstable. (Note that the solution C2
�
¡1
1

�
e6t

starts arbitrarily near to (0; 0) but always �flows away�).
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Stability of autonomous linear differential equations

Example 84. (spiral source, spiral sink, center point)

(a) Analyze the system d

dt

�
x
y

�
=

�
1 1
¡4 1

��
x
y

�
.

(b) Analyze the system d

dt

�
x
y

�
=¡

�
1 1
¡4 1

��
x
y

�
.

(c) Analyze the system d

dt

�
x
y

�
=

�
0 1
¡4 0

��
x
y

�
.

Solution.

(a)
The eigenvalues are �= 1� 2i and the general solution, in real
form, is:�

x(t)
y(t)

�
=C1

�
cos(2t)
¡2sin(2t)

�
et+C2

�
sin(2t)
2cos(2t)

�
et

In this case, the origin is a spiral source which is an unstable
equilibrium (note that it follows from et!1 as t!1 that all
solutions �flow away� from the origin because they have increasing
amplitude).

Review.
�
cos(t)
sin(t)

�
parametrizes the unit circle.

Similarly,
�

cos(t)
2sin(t)

�
parametrizes an ellipse.

4 2 0 2 4

4

2

0

2

4

(b)
The eigenvalues are �=¡1� 2i and the general solution, in real
form, is:�

x(t)
y(t)

�
=C1

�
cos(2t)
¡2sin(2t)

�
e¡t+C2

�
sin(2t)
2cos(2t)

�
e¡t

In this case, the origin is a spiral sink which is an asymptotically
stable equilibrium (note that it follows from e¡t! 0 as t!1
that all solutions �flow into� the origin because their amplitude
goes to zero).

Comment. Note that
�
x(t)
y(t)

�
solves the first system if and only

if
�
x(¡t)
y(¡t)

�
is a solution to the second. Consequently, the phase

portraits look alike but all arrows are reversed.

4 2 0 2 4

4

2

0

2

4

(c)
The eigenvalues are �=�2i and the general solution, in real form,
is:�

x(t)
y(t)

�
=C1

�
cos(2t)
¡2sin(2t)

�
+C2

�
sin(2t)
2cos(2t)

�

In this case, the origin is a center point which is a stable equi-
librium (note that the solutions are periodic with period � and
therefore loop around the origin; with each trajectory a perfect
ellipse).

4 2 0 2 4

4

2

0

2

4
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Sketch of Lecture 15 Wed, 9/25/2024

Review. In Example 81, we considered the system dx

dt
= y¡ 5x, dy

dt
=4x¡ 2y.

We found that it has general solution
�
x(t)
y(t)

�
=C1

�
1
4

�
e¡t+C2

�
¡1
1

�
e¡6t.

In particular, the only equilibrium point is (0; 0) and it is asymptotically stable.

The following example is an inhomogeneous version of Example 81:

Example 85. Analyze the system dx

dt
= y¡ 5x+3, dy

dt
=4x¡ 2y.

In particular, determine the general solution as well as all equilibrium points and their stability.

Solution. As reviewed above, we looked at the corresponding homogeneous system in Example 81 and found
that its general solution is

�
x(t)
y(t)

�
=C1

�
1
4

�
e¡t+C2

�
¡1
1

�
e¡6t.

Note that we can write the present system in matrix form as
�
x
y

�0
=M

�
x
y

�
+

�
3
0

�
with M =

�
¡5 1
4 ¡2

�
.

To find the equilibrium point, we solveM
�
x
y

�
+

�
3
0

�
=0 to find

�
x
y

�
=¡M¡1

�
3
0

�
=¡1

6

�
¡2 ¡1
¡4 ¡5

��
3
0

�
=

�
1
2

�
.

The fact that
�
1
2

�
is an equilibrium point means that

�
x
y

�
=

�
1
2

�
is a particular solution!

(Make sure that you see that it has exactly the form we expect from the method of undetermined coefficients!)

Thus, the general solution must be
�
x(t)
y(t)

�
=

�
1
2

�
+C1

�
1
4

�
e¡t+C2

�
¡1
1

�
e¡6t (that is, the particular solution

plus the general solution of the homogeneous system that we solved in Example 81).

As a result, the phase portrait is going to look just as in Example 81 but shifted by
�
1
2

�
:

4 2 0 2 4

4

2

0

2

4

Because both eigenvalues (¡1 and ¡6) are negative,
�
1
2

�
is an asymptotically stable equilibrium point. More

precisely, it is what is called a nodal source.
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As we have started to observe, the eigenvalues determine the stability of the equilibrium point in
the case of an autonomous linear 2-dimensional systems. The following table gives an overview.

Important. Note that such a system must be of the form d

dt

�
x
y

�
=M

�
x
y

�
+ c, where c=

�
c1
c2

�
is a constant

vector. Because the system is autonomous, the matrix M and the inhomogeneous part c cannot depend on t.

(stability of autonomous linear 2-dimensional systems)

eigenvalues behaviour stability
real and both positive nodal source unstable
real and both negative nodal sink asymptotically stable
real and opposite signs saddle unstable
complex with positive real part spiral source unstable
complex with negative real part spiral sink asymptotically stable
purely imaginary center point stable but not asymptotically stable

Review: Linearizations of nonlinear functions

Recall from Calculus I that a function f(x) around a point x0 has the linearization

f(x)� f(x0)+ f 0(x0)(x¡x0):

Here, the right-hand side is the linearization and we also know it as the tangent line to f(x) at x0.

Recall from Calculus III that a function f(x; y) around a point (x0; y0) has the linearization

f(x; y)� f(x0; y0)+ fx(x0; y0)(x¡x0)+ fy(x0; y0)(y¡ y0):

Again, the right-hand side is the linearization. This time, it describes the tangent plane to f(x; y) at (x0; y0).

Recall that fx=
@

@x
f(x; y) and fy=

@

@y
f(x; y) are the partial derivatives of f .

Example 86. Determine the linearization of the function 3+2xy2 at (2; 1).
Solution. If f(x; y)= 3+2xy2, then fx=2y2 and fy=4xy. In particular, fx(2; 1)=2 and fy(2; 1)= 8.

Accordingly, the linearization is f(2; 1)+ fx(2; 1)(x¡ 2)+ fy(2; 1)(y¡ 1)=7+2(x¡ 2)+ 8(y¡ 1).
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Sketch of Lecture 16 Fri, 9/27/2024

Review. The matrix exponential and how to compute it.

Excursion: Euler's identity

Theorem 87. (Euler's identity) eix= cos(x)+ i sin(x)

Proof. Observe that both sides are the (unique) solution to the IVP y 0= iy, y(0)= 1.
[Check that by computing the derivatives and verifying the initial condition! As we did in class.] �

On lots of T-shirts. In particular, with x = �, we get e�i=¡1 or ei� + 1 = 0 (which connects the five
fundamental constants).

Example 88. Where do trig identities like sin(2x)=2cos(x)sin(x) or sin2(x)= 1¡ cos(2x)
2

(and
infinitely many others you have never heard of!) come from?

Short answer: they all come from the simple exponential law ex+y= exey.
Let us illustrate this in the simple case (ex)2= e2x. Observe that

e2ix = cos(2x)+ i sin(2x)
eixeix = [cos(x)+ i sin(x)]2= cos2(x)¡ sin2(x)+ 2i cos(x)sin(x):

Comparing imaginary parts (the �stuff with an i�), we conclude that sin(2x)= 2cos(x)sin(x).
Likewise, comparing real parts, we read off cos(2x)= cos2(x)¡ sin2(x).

(Use cos2(x)+ sin2(x)= 1 to derive sin2(x)= 1¡ cos(2x)
2

from the last equation.)

Challenge. Can you find a triple-angle trig identity for cos(3x) and sin(3x) using (ex)3= e3x?

Or, use ei(x+y)= eixeiy to derive cos(x+ y)= cos(x)cos(y)¡ sin(x)sin(y) and sin(x+ y)= ::: (that's what
we actually did in class).

Realize that the complex number ei�=cos(�)+ i sin(�) corresponds to the point (cos(�); sin(�)).
These are precisely the points on the unit circle!

Recall that a point (x; y) can be represented using polar coordinates (r; �), where r is the
distance to the origin and � is the angle with the x-axis.

Then, x= r cos� and y= r sin�.

Every complex number z can be written in polar form as z= rei�, with r= jz j.

Why? By comparing with the usual polar coordinates (x= r cos� and y= r sin�), we can write

z=x+ iy= r cos�+ ir sin�= rei�:

In the final step, we used Euler's identity.
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Sketch of Lecture 17 Fri, 10/4/2024

Review: Linearizations of nonlinear functions (cont'd)

Recall from Calculus I that a function f(x) around a point x0 has the linearization

f(x)� f(x0)+ f 0(x0)(x¡x0):

Here, the right-hand side is the linearization and we also know it as the tangent line to f(x) at x0.

Recall from Calculus III that a function f(x; y) around a point (x0; y0) has the linearization

f(x; y)� f(x0; y0)+ fx(x0; y0)(x¡x0)+ fy(x0; y0)(y¡ y0):

Again, the right-hand side is the linearization. This time, it describes the tangent plane to f(x; y) at (x0; y0).

Recall that fx=
@

@x
f(x; y) and fy=

@

@y
f(x; y) are the partial derivatives of f .

Example 89. Determine the linearization of the function 3+2xy2 at (2; 1).
Solution. If f(x; y)= 3+2xy2, then fx=2y2 and fy=4xy. In particular, fx(2; 1)=2 and fy(2; 1)= 8.
Accordingly, the linearization is f(2; 1)+ fx(2; 1)(x¡ 2)+ fy(2; 1)(y¡ 1)=7+2(x¡ 2)+ 8(y¡ 1).

It follows that a vector function f(x; y)=
�
f(x; y)
g(x; y)

�
around a point (x0; y0) has the linearization

�
f(x; y)
g(x; y)

�
�

�
f(x0; y0)
g(x0; y0)

�
+
�
fx(x0; y0)
gx(x0; y0)

�
(x¡x0)+

"
fy(x0; y0)
gy(x0; y0)

#
(y¡ y0)

=
�
f(x0; y0)
g(x0; y0)

�
+

"
fx(x0; y0) fy(x0; y0)
gx(x0; y0) gy(x0; y0)

#
=J(x0;y0)

�
x¡x0
y¡ y0

�
:

The matrix J(x; y)=
"
fx fy
gx gy

#
is called the Jacobian matrix of f(x; y).

Example 90. Determine the linearization of the vector function
"

3+ 2xy2

x(y3¡ 2x)

#
at (2; 1).

Solution. If
�
f(x; y)
g(x; y)

�
=

"
3+2xy2

x(y3¡ 2x)

#
, then the Jacobian matrix is

J(x; y)=

"
fx fy
gx gy

#
=

"
2y2 4xy

y3¡ 4x 3xy2

#
:

In particular, J(2; 1)=
�

2 8
¡7 6

�
. The linearization is

�
f(2; 1)
g(2; 1)

�
+ J(2; 1)

�
x¡ 2
y¡ 1

�
=

�
7
¡6

�
+

�
2 8
¡7 6

��
x¡ 2
y¡ 1

�
.

Important comment. If we multiply out the matrix-vector product, then we get
�

7+2(x¡ 2)+ 8(y¡ 1)
¡6¡ 7(x¡ 2)+ 6(y¡ 1)

�
.

In the first component we get exactly what we got for the linearization of f(x; y) in the previous example.
Likewise, the second component is the linearization of g(x; y) by itself.
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Stability of nonlinear autonomous systems

We now observe that we can (typically) determine the stability of an equilibrium point of a
nonlinear system by simply linearizing at that point.

(stability of autonomous nonlinear 2-dimensional systems)

Suppose that (x0; y0) is an equilibrium point of the system d

dt

�
x
y

�
=

�
f(x; y)
g(x; y)

�
.

If the Jacobian matrix J(x0; y0) is invertible, then its eigenvalues determine the stability and
behaviour of the equlibrium point as for a linear system except in the following cases:

� If the eigenvalues are pure imaginary, we cannot predict stability (the equilibrium point could be either
a center or a spiral source/sink; whereas the equilibrium point of the linearization is a center).

� If the eigenvalues are real and equal, then the equilibrium point could be either nodal or spiral (whereas
the linearization has a nodal equilibrium point). The stability, however, is the same.

Comment. We need the Jacobian matrix J(x0; y0) to be invertible, so that the linearized system has a unique
equilibrium point.

Plot, for instance, the phase portrait of d

dt

�
x
y

�
=

�
(x¡ 2y)x
(x¡ 2)y

�
.

Purely imaginary eigenvalues? The issue with pure imaginary eigenvalues here comes from the fact that the
linearization is only an approximation, with the true (nonlinear) behaviour slightly deviating. Slightly perturbing
purely imaginary roots can also lead to (small but) positive real part (unstable; spiral source) or negative real
part (asymptotically stable; spiral sink).
Real repeated eigenvalue? The issue with a real repeated eigenvalue is similar. Slightly perturbing such a root
can lead to real eigenvalues (nodal) or a pair of complex conjugate eigenvalues (spiral). However, the real part
of these perturbations still has the same sign so that we can still predict the stability itself.

Example 91. (cont'd) Consider again the system dx

dt
= x � (y ¡ 1), dy

dt
= y � (x ¡ 1). Without

consulting a plot, determine the equilibrium points and classify their stability.
Solution. See Example 79 for the phase portrait. However, we will not use it in the following.
To find the equilibrium points, we solve x(y¡ 1)= 0 (that is, x=0 or y=1) and y(x¡ 1)= 0 (that is, x=1
or y=0). We conclude that the equilibrium points are (0; 0) and (1; 1).

Our system is d

dt

�
x
y

�
=

�
f(x; y)
g(x; y)

�
with

�
f(x; y)
g(x; y)

�
=

�
x � (y¡ 1)
y � (x¡ 1)

�
.

The Jacobian matrix is J(x; y)=
"
fx fy
gx gy

#
=

�
y¡ 1 x
y x¡ 1

�
.

� At (0; 0), the Jacobian matrix is J(0; 0)=
�
¡1 0
0 ¡1

�
. We can read off that the eigenvalues are ¡1;¡1.

Since they are both negative, (0; 0) is a nodal sink. In particular, (0; 0) is asymptotically stable.

� At (1; 1), the Jacobian matrix is J(1; 1)=
�
0 1
1 0

�
.

The characteristic polynomial is det
��
¡� 1
1 ¡�

��
= �2 ¡ 1, which has roots �1. These are the eigen-

values. Since one is positive and the other is negative, (1; 1) is a saddle. In particular, (1; 1) is unstable.
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Sketch of Lecture 18 Mon, 10/7/2024

Example 92. Consider again the system d

dt

�
x
y

�
=

"
2y¡x2

(x¡ 3)(x¡ y)

#
. Without consulting a plot,

determine the equilibrium points and classify their stability.
Solution. To find the equilibrium points, we solve 2y¡x2=0 and (x¡ 3)(x¡ y).
It follows from the second equation that x=3 or x= y:

� If x=3, then the first equation implies y= 9

2
.

� If x= y, then the first equation becomes 2y¡ y2=0, which has solutions y=0 and y=2.

Hence, the equilibrium points are (0; 0), (2; 2) and
�
3;
9

2

�
.

The Jacobian matrix of
�
f
g

�
=

�
2y¡ x2

(x¡ 3)(x¡ y)

�
is J =

"
fx fy
gx gy

#
=

�
¡2x 2

2x¡ y¡ 3 ¡x+3

�
.

� At (0; 0), the Jacobian matrix is J =
�

0 2
¡3 3

�
. The eigenvalues are 1

2
(3� i 15

p
).

Since these are complex with positive real part, (0; 0) is a spiral source and, in particular, unstable.

� At (2; 2), the Jacobian matrix is J =
�
¡4 2
¡1 1

�
. The eigenvalues are 1

2
(¡3� 17

p
)�¡3.562; 0.562.

Since these are real with opposite signs, (2; 2) is a saddle and, in particular, unstable.

� At
�
3;
9

2

�
, the Jacobian matrix is J =

"
¡6 2

¡3
2
0

#
. The eigenvalues are ¡3� 6

p
�¡5.449;¡0.551.

Since these are real and both negative,
�
3;
9

2

�
is a nodal sink and, in particular, asymptotically stable.

4 2 0 2 4

4

2

0

2

4

Comment. Can you confirm our analysis in the above plot? Note that it is becoming hard to see the details.
One solution would be to make separate phase portraits focusing on the vicinity of each equilibrium plot. Do it!
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Sketch of Lecture 19 Wed, 10/9/2024

Review: Linear first-order DEs

The most general first-order linear DE is P (t)y 0+Q(t)y+R(t)= 0.
By dividing by P (t) and rearranging, we can always write it in the form y 0= a(t)y+ f(t).
The corresponding homogeneous linear DE is y 0= a(t)y.

Its general solution is y(t)=Ce
R
a(t)dt.

Why? Compute y 0 and verify that the DE is indeed satisfied. Alternatively, we can derive the formula using
separation of variables as illustrated in the next example.

Example 93. (review homework) Solve y 0= t2y.

Solution. This DE is separable as well: 1
y
dy= t2 dt (note that we just lost the solution y=0).

Integrating gives lnjy j = 1

3
t3 + A, so that jy j = e

1
3
t2+A. Since the RHS is never zero, we must have either

y= e
1
3
t2+A or y=¡e

1
3
t2+A.

Hence y=�eAe
1
3
t3
=Ce

1
3
t3 (with C =�eA). Note that C=0 corresponds to the singular solution y=0.

In summary, the general solution is y=Ce
1
3
t3 (with C any real number).

Solving linear first-order DEs using variation of constants

Recall that, to find the general solution of the inhomogeneous DE

y 0= a(t)y+ f(t);

we only need to find a particular solution yp.

Then the general solution is yp+Cyh, where yh is any solution of the homogeneous DE y 0= a(t)y.

Comment. In applications, f(t) often represents an external force. As such, the inhomogeneous DE is sometimes
called �driven� while the homogeneous DE would be called �undriven�.

Theorem 94. (variation of constants) y 0= a(t)y+ f(t) has the particular solution

yp(t)= c(t)yh(t) with c(t)=
Z

f(t)
yh(t)

dt;

where yh(t)= e
R
a(t)dt is a solution to the homogeneous equation y 0= a(t)y.

Proof. Let us plug yp(t)= yh(t)

Z
f(t)
yh(t)

dt into the DE to verify that it is a solution:

yp
0 (t)= yh

0 (t)

Z
f(t)
yh(t)

dt+ yh(t)
d
dt

Z
f(t)
yh(t)

dt

f(t)
yh(t)

= a(t)yh(t)

Z
f(t)
yh(t)

dt+ f(t)= a(t)yp(t)+ f(t) �

Comment. Note that the formula for yp(t) gives the general solution if we let
Z

f(t)
yh(t)

dx be the general

antiderivative. (Think about the effect of the constant of integration!)
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Comment. Instead of variation of constants, you may have solved linear DEs using integrating factors instead. In
that case, the DE is first written as y 0¡a(t)y= f(t) and then both sides are multiplied with the integrating factor

g(t)= exp
�Z

¡a(t)dt
�
:

Because g0(t)=¡a(t)g(t), we then have

g(t)y0¡ a(t)g(t)y
=

d
dt
g(t)y

= f(t)g(t):

Integrating both sides gives

g(t)y=

Z
f(t)g(t)dt:

Since g(t)= 1/yh(t), this then produces the same formula for y that we found using variation of constants.

How to find this formula. The formula for yp(t) can be found using variation of constants
(also called variation of parameters):

� We look for a solution of the form yp(t)= c(t)yh(t).
Keep in mind that cyh(t) is the solution to the homogeneous DE. Going from a constant c (for the
homogeneous case) to c(t) (for the inhomogeneous case) is why this is called �variation of constants�.

� To find a c(t) that works, we plug into the DE y 0= ay+ f resulting in

c 0yh+ cyh
0 = acyh+ f:

Since yh
0 = ayh, this simplifies to c 0yh= f or, equivalently, c 0= f

yh
.

� We integrate to find c(t)=
R f(t)

yh(t)
dt, which is the formula in the theorem.

Example 95. Solve x2y 0=1¡xy+2x, y(1)=3.

Solution. Write as dy

dx
= a(x)y+ f(x) with a(x)=¡1

x
and f(x)= 1

x2
+

2

x
.

yh(x)= e
R
a(x)dx= e¡lnx=

1

x
. (Why can we write lnx instead of lnjxj? See comment below.) Hence:

yp(x)= yh(x)

Z
f(x)

yh(x)
dx=

1

x

Z
(
1

x
+2)dx=

lnx+2x+C

x

Using y(1)= 3, we find C=1. In summary, the solution is y= ln(x)+ 2x+1

x
.

Comment. Note that x=1>0 in the initial condition. Because of that we know that (at least locally) our solution
will have x>0. Accordingly, we can use lnx instead of lnjxj. (If the initial condition had been y(¡1)=3, then
we would have x< 0, in which case we can use ln(¡x) instead of lnjxj.)
Comment. Observe how the general solution (with parameter C) is indeed obtained from any particular solution
(say, ln x+2x

x
) plus the general solution to the homogeneous equation, which is C

x
.
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Systems of linear DEs: the inhomogeneous case
Recall that any linear DE can be transformed into a first-order system. Hence, any linear DE (or
any system of linear DEs) can be written as

y 0=A(t) y+ f(t):

Note. The DE is allowed to have nonconstant coefficients (A depends on t). On the other hand, this is an
autonomous DE (those for which we can analyze phase portraits) only if A(t) and f(t) actually don't depend on t.

The same arguments as for Theorem 94 with the same result apply to systems of linear equations!
Recall that we showed in Theorem 94 that y 0= a(t)y+ f(t) has the particular solution

yp(t)= yh(t)

Z
f(t)
yh(t)

dt;

where yh(t)= e
R
a(t)dt is a solution to the homogeneous equation y 0= a(t)y.

Theorem 96. (variation of constants) y 0=A(t) y+ f(t) has the particular solution

yp(t)=�(t)
Z
�(t)¡1f(t)dt;

where �(t) is a fundamental matrix solution to y 0=A(t) y.

Proof. Since the general solution of the homogeneous equation y 0=A(t) y is yh=�(t)c, we are going to vary
the constant c and look for a particular solution of the form yp=�(t)c(t). Plugging into the DE, we get:

yp
0 =�0c+�c0=A�c+�c 0 =

!
Ayp+ f =A�c+ f

For the first equality, we used the matrix version of the usual product rule (which holds since differentiation is
defined entry-wise). For the second equality, we used �0=A�.
Hence, yp=�(t)c(t) is a particular solution if and only if �c 0= f .
The latter condition means c 0=�¡1f so that c=

R
�(t)¡1f(t)dt, which gives the claimed formula for yp. �

Example 97. Find a particular solution to y 0=
�
2 3
2 1

�
y+

"
0

¡2e3t

#
.

Solution. First, we determine (do it!) a fundamental matrix solution for y 0=
�
2 3
2 1

�
y: �(x)=

"
e¡t 3e4t

¡e¡t 2e4t

#
Using det(�(t))= 5e3t, we find �(t)¡1= 1

5

"
2et ¡3et
e¡4t e¡4t

#
.

Hence, �(t)¡1f(t)= 2

5

"
3e4t

¡e¡t

#
and

R
�(t)¡1f(t)dx=

2

5

"
3/4e4t

e¡t

#
.

By variation of constants, yp(t)=�(t)
R
�(t)¡1f(t)dt=

"
e¡t 3e4t

¡e¡t 2e4t

#
2

5

"
3/4e4t

e¡t

#
=

�
3/2
1/2

�
e3t.

Comment. Note that the solution is of the form that we anticipate from the method of undetermined coefficients
(which we only discussed in the case of a single DE but which works similarly for systems).

Sage. Here is a way to have Sage do these computations for us. Keep in mind that we can choose �(t)= eAt.

>>> s, t = var('s, t')

>>> A = matrix([[2,3],[2,1]])

>>> y = exp(A*t)*integrate(exp(-A*t)*vector([0,-2*e^(3*t)]), t)

>>> y.simplify_full()�
3
2
e(3 t);

1
2
e(3 t)

�
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In the special case that �(t)= eAt, some things become easier. For instance, �(t)¡1= e¡At. In
that case, we can explicitely write down solutions to IVPs:

� y 0=Ay, y(0)= c has (unique) solution y(t)= eAtc.

� y 0=Ay+ f(t), y(0)= c has (unique) solution y(t)= eAtc+ eAt
R
0

t
e¡Asf(s)ds.

Example 98. Let A=
�

1 2
¡1 4

�
.

(a) Determine eAt.

(b) Solve y 0=Ay, y(0)=
�
1
2

�
.

(c) Solve y 0=Ay+
"

0
2et

#
, y(0)=

�
1
2

�
.

Solution.

(a) By proceeding as in Example 73 (do it!), we find eAt=
"
2e2t¡ e3t ¡2e2t+2e3t

e2t¡ e3t ¡e2t+2e3t

#
.

(b) y(t)= eAt
�
1
2

�
=

"
¡2e2t+3e3t

¡e2t+3e3t

#

(c) y(t)= eAt
�
1
2

�
+ eAt

R
0
t
e¡Asf(s)ds. We compute:R

0

t
e¡Asf(s)ds=

R
0

t
"
2e¡2s¡ e¡3s ¡2e¡2s+2e¡3s

e¡2s¡ e¡3s ¡e¡2s+2e¡3s

#�
0
2es

�
ds=

R
0

t
"
¡4e¡s+4e¡2s

¡2e¡s+4e¡2s

#
ds=

"
4e¡t¡ 2e¡2t¡ 2
2e¡t¡ 2e¡2t

#

Hence, eAt
R
0
t
e¡Asf(s)ds=

"
2e2t¡ e3t ¡2e2t+2e3t

e2t¡ e3t ¡e2t+2e3t

#"
4e¡t¡ 2e¡2t¡ 2
2e¡t¡ 2e¡2t

#
=

"
2et¡ 4e2t+2e3t

¡2e2t+2e3t

#
.

Finally, y(t)=
"
¡2e2t+3e3t

¡e2t+3e3t

#
+

"
2et¡ 4e2t+2e3t

¡2e2t+2e3t

#
=

"
2et¡ 6e2t+5e3t

¡3e2t+5e3t

#
.

Sage. Here is how we can let Sage do these computations for us:

>>> s, t = var('s, t')

>>> A = matrix([[1,2],[-1,4]])

>>> y = exp(A*t)*vector([1,2]) + exp(A*t)*integrate(exp(-A*s)*vector([0,2*e^s]), s,0,t)

>>> y.simplify_full()

(5 e(3 t)¡ 6 e(2 t)+2 et; 5 e(3 t)¡ 3 e(2 t))

Comment. Can you see that the solution is of the form that we anticipate from the method of undeter-
mined coefficients?
Indeed, y(t)= yp(t)+ yh(t) where the simplest particular solution is yp(t)=

�
2et

0

�
.
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Modeling & Applications

Mixing problems

Example 99. Consider two brine tanks. Tank T1 contains 24gal water containing 3lb salt, and
tank T2 contains 9gal pure water.

� T1 is being filled with 54gal/min water containing 0.5lb/gal salt.

� 72gal/min well-mixed solution flows out of T1 into T2.

� 18gal/min well-mixed solution flows out of T2 into T1.

� Finally, 54gal/min well-mixed solution is leaving T2.

We wish to understand how much salt is in the tanks after t minutes.

(a) Derive a system of differential equations.

(b) Determine the equilibrium points and classify their stability. What does this mean here?

(c) Solve the system to find explicit formulas for how much salt is in the tanks after t minutes.

Solution.

(a) Note that the amount of water in each tank is constant because the flows balance each other.
Let yi(t) denote the amount of salt (in lb) in tank Ti after time t (in min). In time interval [t; t+�t]:

�y1� 54 � 1
2
��t¡ 72 � y1

24
��t+ 18 � y2

9
��t, so y10 = 27¡ 3y1+2y2. Also, y1(0)= 3.

�y2� 72 � y124 ��t¡ 72 � y2
9
��t, so y20 =3y1¡ 8y2. Also, y2(0)=0.

Using matrix notation and writing y=
�
y1
y2

�
, this is d

dt
y=

�
¡3 2
3 ¡8

�
y+

�
27
0

�
, y(0)=

�
3
0

�
.

(b) Note that this system is autonomous! Otherwise, we could not pursue our stability analysis.

To find the equilibrium point (since the system is linear, there should be just one), we set d

dt
y=

�
0
0

�
and

solve
�
¡3 2
3 ¡8

�
y+

�
27
0

�
=

�
0
0

�
. We find y=

�
¡3 2
3 ¡8

�¡1� ¡27
0

�
=

�
12
4.5

�
.

The characteristic polynomial of
�
¡3 2
3 ¡8

�
is (¡3¡�)(¡8¡�)¡ 6=�2+ 11�+ 18=(�+9)(�+2).

Hence, the eigenvalues are ¡9; ¡2. Since they are both negative, the equilibrium point is a nodal sink
and, in particular, asymptotically stable.
Having an equilibrium point at (12;4.5), means that, if the salt amounts are y1=12, y2=4.5, then they
won't change over time (but will remain unchanged at these levels). The fact that it is asymptotically
stable means that salt amounts close to these balanced levels will, over time, approach the equilibrium
levels. (Because the system is linear, this is also true for levels that are not �close�.)
We could have �seen� the equilibrium point!
Indeed, noticing that, for a constant (equilibrium) particular solution y, each tank has to have a constant
concentration of 0.5lb/gal of salt, we find directly y= 0.5

�
24
9

�
=

�
12
4.5

�
.

(c) This is an IVP that we can solve (with some work). Do it! For instance, we can apply variation of constants.
(Alternatively, leverage our particular solution from the previous part!) Skipping most work, we find:

� If A=
�
¡3 2
3 ¡8

�
, then eAt= 1

7

"
e¡9t+6e¡2t ¡2e¡9t+2e¡2t

¡3e¡9t+3e¡2t 6e¡9t+1e¡2t

#

� y= eAt
�
1
0

�
+ eAt

R
0
t
e¡As

�
27
0

�
ds=

1

7

"
e¡9t+6e¡2t

¡3e¡9t+3e¡2t

#
+

3

14
eAt

"
2e9t+ 54e2t¡ 56
¡6e9t+ 27e2t¡ 21

#
=

"
12¡ 9e¡2t

4.5¡ 4.5e¡2t

#
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