Review. The heat equation: $u_t = k u_{xx}$

Example 157. Note that $u(x,t) = ax + b$ solves the heat equation.

Example 158. To get a feeling, let us find some solutions to $u_t = u_{xx}$ (for starters, $k = 1$).

- $u(x,t) = ax + b$ is a solution.
- For instance, $u(x,t) = e^t e^x$ is a solution. [Not a very interesting one for modeling heat flow because it increases exponentially in time.]
- More interesting are $u(x,t) = e^{-t}\cos(x)$ and $u(x,t) = e^{-t}\sin(x)$.
- More generally, $e^{-n^2t}\cos(nx)$ and $e^{-n^2t}\sin(nx)$ are solutions.
- Can you find further solutions?

Important observation. This actually reveals a strategy for solving the PDE $u_t = u_{xx}$ with conditions such as:

$$
u(0, t) = u(\pi, t) = 0
$$
 (BC)

$$
u(x, 0) = f(x), \quad x \in (0, \pi)
$$
 (IC)

Namely, the solutions $u_n(x,t) = e^{-n^2t} \sin(nx)$ all satisfy (BC).

It remains to satisfy (IC). Note that $u_n(x, 0) = \sin(nx)$. To find $u(x, t)$ such that $u(x, 0) = f(x)$, we can write $f(x)$ as a Fourier sine series (i.e. extend $f(x)$ to a 2π -periodic odd function):

$$
f(x) = \sum_{n \geq 1} b_n \sin(nx)
$$

Then $u(x,t) = \sum b_n u_n(x,t) = \sum b_n e^{-n^2 t} \sin(nx)$ solves the PDE $n \geqslant 1$ $n \geqslant$ $b_nu_n(x,t) = \sum b_ne^{-n^2t}\sin(nx)$ solves the PDE $u_t = u_{xx}$ with (B) $n \geqslant 1$ $b_ne^{-n^2t}\mathrm{sin}(nx)$ solves the PDE $u_t\!=\!u_{xx}$ with (BC) and (IC).

Example 159. Find the unique solution $u(x,t)$ to: $u(0,t) = u(\pi,t) = 0$ (BC) (BC) $u(x, 0) = \sin(2x) - 7\sin(3x), \quad x \in (0, \pi)$ (IC)

Solution. As we just observed (see next example for what to do in general), the functions $u_n(x,t) = e^{-n^2t} \sin(nx)$ satisfy (PDE) and (BC) for any integer $n = 1, 2, 3, ...$

Since $u_n(x, 0) = \sin(nx)$, we have $u_2(x, 0) - 7u_3(x, 0) = \sin(2x) - 7\sin(3x)$ as needed for (IC). Therefore, $(PDE)+(BC)+(IC)$ is solved by

$$
u(x,t) = u_2(x,t) - 7u_3(x,t) = e^{-4t}\sin(2x) - 7e^{-9t}\sin(3x).
$$

Comment. Why did we restrict the integer *n* to the case $n \geq 1$?

 $[n=0$ just gives the zero function, and negative values don't give anything new because $u_{-n}(x,t) = -u_n(x,t)$.]

In the next example, we show that this idea can always be used to solve the heat equation.

Example 160. Find the unique solution $u(x,t)$ to:

$$
\begin{array}{ll}\n u_t = k u_{xx} & \text{(PDE)} \\
\text{or} & u(0, t) = u(L, t) = 0 & \text{(BC)} \\
u(x, 0) = f(x), & x \in (0, L) & \text{(IC)}\n \end{array}
$$

Solution.

- We will first look for simple solutions of $(PDE)+(BC)$ (and then we plan to take a combination of such solutions that satisfies (IC) as well). Namely, we look for solutions $u(x,t) = X(x)T(t)$. This approach is called separation of variables and it is crucial for solving other PDEs as well.
- Plugging into (PDE), we get $X(x)T'(t) = kX''(x)T(t)$, and so $\frac{X''(x)}{X(x)} = \frac{T'(t)}{kT(t)}$. $kT(t)$.

Note that the two sides cannot depend on *x* (because the right-hand side doesn't) and they cannot depend on *t* (because the left-hand side doesn't). Hence, they have to be constant. Let's call this constant $-\lambda$. Then, $\frac{X''(x)}{X(x)} = \frac{T'(t)}{kT(t)} = \text{const} =: -\lambda$. We thus have $X'' + \lambda X = 0$ and $T' + \lambda kT = 0.$

- Consider (BC). Note that $u(0,t) = X(0)T(t) = 0$ implies $X(0) = 0$. [Because otherwise $T(t) = 0$ for all *t*, which would mean that $u(x, t)$ is the dull zero solution.] Likewise, $u(L, t) = X(L)T(t) = 0$ implies $X(L) = 0$.
- So X solves $X'' + \lambda X = 0$, $X(0) = 0$, $X(L) = 0$. We know that, up to multiples, the only nonzero solutions are the eigenfunctions $X(x) = \sin(\frac{\pi n}{L}x)$ corresponding to the eigenvalues $\lambda = (\frac{\pi n}{L})^2$, $n = 1, 2, 3....$
- \bullet On the other hand, T solves $T'+\lambda kT=0$, and hence $T(t)=e^{-\lambda kt}=e^{-\left(\frac{\pi n}{L}\right)^2kt}.$.
- \bullet Taken together, we have the solutions $u_n(x,t) = e^{-\left(\frac{\pi n}{L}\right)^2kt}\sin(\frac{\pi n}{L}x)$ solving $(\text{PDE})+(\text{BC})$.
- \bullet We wish to combine these in such a way that (IC) holds as well. At $t = 0$, $u_n(x, 0) = \sin(\frac{\pi n}{L}x)$. All of these are $2L$ -periodic.

Hence, we extend *f*(*x*), which is only given on (0*; L*), to an odd 2*L*-periodic function (its Fourier sine series!). By making it odd, its Fourier series will only involve sine terms: $f(x) = \sum_{n=1}^{\infty} b_n \sin(\frac{\pi n}{L}x)$. . Note that

$$
b_n = \frac{1}{L} \int_{-L}^{L} f(x) \sin\left(\frac{n\pi x}{L}\right) dx = \frac{2}{L} \int_{0}^{L} f(x) \sin\left(\frac{n\pi x}{L}\right) dx,
$$

where the first integral makes reference to the extension of $f(x)$ while the second integral only uses $f(x)$ on its original interval of definition.

Consequently, $(PDE)+(BC)+(IC)$ is solved by

$$
u(x,t) = \sum_{n=1}^{\infty} b_n u_n(x,t) = \sum_{n=1}^{\infty} b_n e^{-\left(\frac{\pi n}{L}\right)^2 kt} \sin\left(\frac{\pi n}{L}x\right),
$$

where

$$
b_n = \frac{2}{L} \int_0^L f(x) \sin\left(\frac{n\pi x}{L}\right) dx.
$$

Example 161. Find the unique solution $u(x,t)$ to: $\begin{cases} u_t = 3u_x x \\ u(0,t) = u(4,t) = 0 \end{cases}$ (BC) $u(x,0) = 5\sin(\pi x) - \sin(3\pi x), \quad x \in (0,4)$ (IC) $u(x, 0) = 5\sin(\pi x) - \sin(3\pi x), \quad x \in (0, 4)$

Solution. This is the case $k = 3$, $L = 4$ that we solved in Example [160](#page-1-0) where we found that the functions

$$
u_n(x,t) = e^{-\left(\frac{\pi n}{L}\right)^2 kt} \sin\left(\frac{\pi n}{L}x\right) = e^{-3\left(\frac{\pi n}{4}\right)^2 t} \sin\left(\frac{\pi n}{4}x\right)
$$

solve $(\text{PDE})+(\text{BC})$. Since $u_n(x,0) = \sin(\frac{\pi n}{4}x)$, we have

$$
5u_4(x,0) - u_{12}(x,0) = 5\sin(\pi x) - \sin(3\pi x),
$$

which is what we need for the right-hand side of (IC) . Therefore, $(PDE)+(BC)+(IC)$ is solved by

 $u(x,t) = 5u_4(x,t) - u_{12}(x,t) = 5e^{-3\pi^2 t} \sin(\pi x) - e^{-27\pi^2 t} \sin(3\pi x)$.