.

.

Example 141. As in the previous example, consider the function $f(t) = 4 - t^2$, defined for $t \in [0, 2].$

- (a) Let $F(t)$ be the Fourier series of $f(t)$ (meaning the 2-periodic extension of $f(t)$). Determine $F(2)$, $F\left(\frac{5}{2}\right)$ and $F\left(-\frac{1}{2}\right)$. .
- (b) Let $G(t)$ be the Fourier cosine series of $f(t)$. Determine $G(2)$, $G\Big(\frac{5}{2}\Big)$ and $G\Big(-\frac{1}{2}\Big).$
- (c) Let $H(t)$ be the Fourier sine series of $f(t)$. Determine $H(2)$, $H\Big(\frac{5}{2}\Big)$ and $H\Big(-\frac{1}{2}\Big).$

Solution.

(a) Note that the extension of $f(t)$ has discontinuities at $..., -2, 0, 2, 4, ...$ (see plot in previous example) and recall that the Fourier series takes average values at these discontinuities:

$$
F(2) = \frac{1}{2}(F(2^-) + F(2^+)) = \frac{1}{2}(0+4) = 2
$$

\n
$$
F(\frac{5}{2}) = F(\frac{5}{2} - 2) = f(\frac{1}{2}) = \frac{15}{4}
$$

\n
$$
F(-\frac{1}{2}) = F(-\frac{1}{2} + 2) = f(\frac{3}{2}) = \frac{7}{4}
$$

(b) $G(2) = f(2) = 0$ (see plot!)

[Note that $G(2^+) = G(2^+ - 4) = G(-2^+) = G(2^-)$ where we used that *G* is even in the last step; in fact, we can show like this that the Fourier cosine series of a continuous function is always continuous.] $\frac{3}{2} = \frac{7}{4}$ 7

4

$$
G\left(\frac{5}{2}\right) = G\left(\frac{5}{2} - 4\right) = G\left(-\frac{3}{2}\right) = f\left(\frac{3}{2}\right) = \frac{7}{4}
$$

$$
G\left(-\frac{1}{2}\right) \stackrel{\text{even}}{=} G\left(\frac{1}{2}\right) = f\left(\frac{1}{2}\right) = \frac{15}{4}
$$

(c) $H(2) = \frac{1}{2}(f(2^-) - f(2^-)) = 0$ (see p $\frac{1}{2}(f(2^-) - f(2^-)) = 0$ (see plot!)

[Note that $H(2^+) = H(2^+ - 4) = H(-2^+) = -H(2^-)$ where we used that *H* is odd in the last step; in fact, we can show like this that the Fourier sine series of a continuous function is always 0 at the jumps.]

$$
H\left(\frac{5}{2}\right) = H\left(\frac{5}{2} - 4\right) = H\left(-\frac{3}{2}\right) = -f\left(\frac{3}{2}\right) = -\frac{7}{4}
$$

$$
H\left(-\frac{1}{2}\right)^{\text{odd}} = -H\left(\frac{1}{2}\right) = -f\left(\frac{1}{2}\right) = -\frac{15}{4}
$$

Differentiating and integrating Fourier series

Theorem 142. If $f(t)$ is continuous and $f(t) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \big(a_n \cos(\frac{n \pi t}{L}) + b_n \sin(\frac{n \pi t}{L})\big)$, then* \star $f'(t)=\sum_{n=1}^{\infty}\big(\frac{n\pi}{L}b_n\mathrm{cos}\big(\frac{n\pi t}{L}\big)-\frac{n\pi}{L}a_n\mathrm{sin}\big(\frac{n\pi t}{L}\big)\big)$ (i.e., we can differentiate termwise).

Technical detail*: f' needs to be, e.g., piecewise smooth (so that it has a Fourier series itself).

Caution! We cannot simply differentiate termwise if $f(t)$ is lacking continuity. See the next example.

 ${\sf Comment.}$ On the other hand, we can integrate termwise (going from the Fourier series of $f'=g$ to the Fourier series of $f=\int g$ because the latter will be continuous). This is illustrated in the example after the next.

Example 143. (caution!) The function $g(t) = \sum_{n \text{ odd}} \frac{4}{\pi n} \sin(n \pi t)$ from Example 139 is 4 $\frac{4}{\pi n} \sin(n \pi t)$ from Example [139](#page--1-0) is not continuous. For all values, except the discontinuities, we have $g'(t)=0.$ On the other hand, differentiating the Fourier series termwise, results in $4{\sum_{n\ {\rm odd}}} \cos(n\pi t)$, which diverges for most values of t (that's easy to check for $t = 0$). This illustrates that we cannot apply Theorem [142](#page-0-0) because *g*(*t*) is lacking continuity.

[The issues we are facing here can be fixed by generalizing the notion of function to distributions. (Maybe you have heard of the Dirac delta "function".)]

Example 144. Let $h(t)$ be the 2-periodic function with $h(t) = |t|$ for $t \in [-1, 1]$. Compute the Fourier series of *h*(*t*).

Solution. We could just use the integral formulas to compute a_n and b_n . Since $h(t)$ is even (plot it!), we will find that $b_n = 0$. Computing a_n is left as an exercise.

Solution. Note that $h(t) = \begin{cases} -t & \text{for } t \in (-1,0) \\ 1 + \text{for } t \in (0,1) \end{cases}$ is continuous a t ^{+t} for $t \in (0,1)$ is continuous and $h'(t) = g(t)$, with $g(t)$ as in Example [139.](#page--1-0) Hence, we can apply Theorem [142](#page-0-0) to conclude

$$
h'(t) = g(t) = \sum_{\substack{n=1 \ n \text{ odd}}}^{\infty} \frac{4}{\pi n} \sin(n\pi t) \quad \Longrightarrow \quad h(t) = \sum_{\substack{n=1 \ n \text{ odd}}}^{\infty} \frac{4}{\pi n} \left(-\frac{1}{\pi n} \right) \cos(n\pi t) + C,
$$

where $C = \frac{a_0}{2} = \frac{1}{2} \int_{-1}^{1} h(t) dt = \frac{1}{2}$ is the constant of integration $\frac{1}{2}$ is the constant of integration. Thus, $h(t) = \frac{1}{2} - \sum_{\substack{n=1 \ n \text{ odd}}}^{\infty} \frac{4}{\pi^2 n^2} \cos(n \pi t).$

Remark. Note that $t=0$ in the last Fourier series, gives us $\frac{\pi^2}{8}=\frac{1}{1}+\frac{1}{3^2}+\frac{1}{5^2}+....$ As an exercise, you can try to find from here the fact that $\sum_{n\geqslant 1}\frac{1}{n^2}\!=\!\frac{\pi^2}{6}.$ Similarly, we can use Fo $\frac{1}{n^2} = \frac{\pi^2}{6}$. Similarly, we can use Four $\frac{\pi^2}{6}$. Similarly, we can use Fourier series to find that $\sum_{n\geqslant 1}\frac{1}{n^4}\!=\!\frac{\pi^4}{90}.$ $\frac{1}{n^4} = \frac{\pi^4}{90}.$ 90 . Just for fun. These are the values $\zeta(2)$ and $\zeta(4)$ of the Riemann zeta function $\zeta(s)$. No such evaluations are known for $\zeta(3), \zeta(5), ...$ and we don't even know (for sure) whether these are rational numbers. Nobody believes these to be rational numbers, but it was only in 1978 that Apéry proved that $\zeta(3)$ is not a rational number.