**Example 137.** Find the Fourier series of the  $2\pi$ -periodic function f(t) defined by



Solution. We compute  $a_0 = \frac{1}{\pi} \int_{-\pi}^{\pi} f(t) \mathrm{d}t = 0$ , as well as

$$\begin{aligned} a_n &= \frac{1}{\pi} \int_{-\pi}^{\pi} f(t) \cos(nt) dt = \frac{1}{\pi} \left[ -\int_{-\pi}^{0} \cos(nt) dt + \int_{0}^{\pi} \cos(nt) dt \right] = 0 \\ b_n &= \frac{1}{\pi} \int_{-\pi}^{\pi} f(t) \sin(nt) dt = \frac{1}{\pi} \left[ -\int_{-\pi}^{0} \sin(nt) dt + \int_{0}^{\pi} \sin(nt) dt \right] = \frac{2}{\pi n} [1 - \cos(n\pi)] \\ &= \frac{2}{\pi n} [1 - (-1)^n] = \begin{cases} \frac{4}{\pi n} & \text{if } n \text{ is odd} \\ 0 & \text{if } n \text{ is even} \end{cases}. \end{aligned}$$

In conclusion,  $f(t) = \sum_{\substack{n=1\\n \text{ odd}}}^{\infty} \frac{4}{\pi n} \sin(nt) = \frac{4}{\pi} \left( \sin(t) + \frac{1}{3} \sin(3t) + \frac{1}{5} \sin(5t) + \dots \right).$ 



**Observation.** The coefficients  $a_n$  are zero for all n if and only if f(t) is odd.

**Comment.** The value of f(t) for  $t = -\pi, 0, \pi$  is irrelevant to the computation of the Fourier series. They are chosen so that f(t) is equal to the Fourier series for all t (recall that, at a jump discontinuity t, the Fourier series converges to the average  $\frac{f(t^-) + f(t^+)}{2}$ ).

**Comment.** Plot the (sum of the) first few terms of the Fourier series. What do you observe? The "overshooting" is known as the **Gibbs phenomenon**: https://en.wikipedia.org/wiki/Gibbs\_phenomenon

**Comment.** Set  $t = \frac{\pi}{2}$  in the Fourier series we just computed, to get Leibniz' series  $\pi = 4[1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + ...]$ . For such an alternating series, the error made by stopping at the term 1/n is on the order of 1/n. To compute the 768 digits of  $\pi$  to get to the Feynman point (3.14159265...721134999999...), we would (roughly) need  $1/n < 10^{-768}$ , or  $n > 10^{768}$ . That's a lot of terms! (Roger Penrose, for instance, estimates that there are about  $10^{80}$  atoms in the observable universe.)

**Remark.** Convergence of such series is not completely obvious! Recall, for instance, that the (odd part of) the harmonic series  $1 + \frac{1}{3} + \frac{1}{5} + \frac{1}{7} + \cdots$  diverges. (On the other hand, do you remember the alternating sign test from Calculus II?)

## Fourier series with general period

There is nothing special about  $2\pi$ -periodic functions considered before (except that  $\cos(t)$  and  $\sin(t)$  have fundamental period  $2\pi$ ). Note that  $\cos(\pi t/L)$  and  $\sin(\pi t/L)$  have period 2L.

**Theorem 138.** Every<sup>\*</sup> 2L-periodic function f can be written as a **Fourier series** 

$$f(t) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left( a_n \cos\left(\frac{n\pi t}{L}\right) + b_n \sin\left(\frac{n\pi t}{L}\right) \right).$$

Technical detail\*: f needs to be, e.g., piecewise smooth.

Also, if t is a discontinuity, then the Fourier series converges to the average  $\frac{f(t^-) + f(t^+)}{2}$ .

The Fourier coefficients  $a_n$ ,  $b_n$  are unique and can be computed as

$$a_n = \frac{1}{L} \int_{-L}^{L} f(t) \cos\left(\frac{n\pi t}{L}\right) dt, \qquad b_n = \frac{1}{L} \int_{-L}^{L} f(t) \sin\left(\frac{n\pi t}{L}\right) dt.$$

**Comment.** This follows from Theorem 133 because, if f(t) has period 2L, then  $\tilde{f}(t) := f\left(\frac{L}{\pi}t\right)$  has period  $2\pi$ .

**Example 139.** Find the Fourier series of the 2-periodic function  $g(t) = \begin{cases} -1 & \text{for } t \in (-1,0) \\ +1 & \text{for } t \in (0,1) \\ 0 & \text{for } t = -1,0,1 \end{cases}$ .

**Solution.** Instead of computing from scratch, we can use the fact that  $g(t) = f(\pi t)$ , with f as in the previous example, to get  $g(t) = f(\pi t) = \sum_{\substack{n=1 \\ n \text{ odd}}}^{\infty} \frac{4}{\pi n} \sin(n\pi t)$ .

## Fourier cosine series and Fourier sine series

Suppose we have a function f(t) which is defined on a finite interval [0, L]. Depending on the kind of application, we can extend f(t) to a periodic function in three natural ways; in each case, we can then compute a Fourier series for f(t) (which will agree with f(t) on [0, L]).

**Comment.** Here, we do not worry about the definition of f(t) at specific individual points like t = 0 and t = L, or at jump discontinuities. Recall that, at a discontinuity, a Fourier series takes the average value.

(a) We can extend f(t) to an *L*-periodic function.

In that case, we obtain the Fourier series 
$$f(t) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left( a_n \cos\left(\frac{2\pi nt}{L}\right) + b_n \sin\left(\frac{2\pi nt}{L}\right) \right).$$

(b) We can extend f(t) to an even 2*L*-periodic function.

In that case, we obtain the Fourier cosine series  $f(t) = \frac{\tilde{a}_0}{2} + \sum_{n=1}^{\infty} \tilde{a}_n \cos\left(\frac{\pi nt}{L}\right)$ .

(c) We can extend f(t) to an odd 2*L*-periodic function.

In that case, we obtain the Fourier sine series 
$$f(t) = \sum_{n=1}^{\infty} \tilde{b}_n \sin\left(\frac{\pi n t}{L}\right)$$
.

**Example 140.** Consider the function  $f(t) = 4 - t^2$ , defined for  $t \in [0, 2]$ .

- (a) Sketch the 2-periodic extension of f(t).
- (b) Sketch the 4-periodic even extension of f(t).
- (c) Sketch the 4-periodic odd extension of f(t).

**Solution.** The 2-periodic extension as well as the 4-periodic even extension:

