Example 137. Find the Fourier series of the 2π -periodic function $f(t)$ defined by

Solution. We compute $a_0 = \frac{1}{\pi} \int_0^\pi f(t) dt = 0$, as well as $\pi \int_{-\pi}^{\pi}$ $\int_{-\pi}^{\infty}$ $\int_{-\pi}^{\infty}$ $\int_{-\pi}^{\infty}$ $\int_{-\pi}^{\infty}$ $\int_{-\pi}^{\infty}$ Z $-\pi$ $\int_0^\pi f(t)\mathrm{d}t = 0$, as well as

$$
a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(t) \cos(nt) dt = \frac{1}{\pi} \Big[-\int_{-\pi}^{0} \cos(nt) dt + \int_{0}^{\pi} \cos(nt) dt \Big] = 0
$$

\n
$$
b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(t) \sin(nt) dt = \frac{1}{\pi} \Big[-\int_{-\pi}^{0} \sin(nt) dt + \int_{0}^{\pi} \sin(nt) dt \Big] = \frac{2}{\pi n} [1 - \cos(n\pi)]
$$

\n
$$
= \frac{2}{\pi n} [1 - (-1)^n] = \begin{cases} \frac{4}{\pi n} & \text{if } n \text{ is odd} \\ 0 & \text{if } n \text{ is even} \end{cases}.
$$

In conclusion, $f(t) = \sum \frac{4}{\pi} \sin(nt) = \frac{4}{\pi} \left(\sin(t) + \frac{1}{2} \sin(3t) + \frac{1}{5} \sin(5t) + \dots \right)$. $\sum_{\substack{n=1 \ n \text{ odd}}}^{\infty} \frac{4}{\pi n} \sin(nt) = \frac{4}{\pi} \left(\sin(t) + \frac{1}{3} \sin(3t) + \frac{1}{5} \sin(5t) + \dots \right).$ $\frac{1}{3}\sin(3t) + \frac{1}{5}\sin(5t) + ...$... $\frac{1}{5}$ sin(5*t*) + ...). .

Observation. The coefficients a_n are zero for all n if and only if $f(t)$ is odd.

Comment. The value of $f(t)$ for $t = -\pi$, $0, \pi$ is irrelevant to the computation of the Fourier series. They are chosen so that *f*(*t*) is equal to the Fourier series for all *t* (recall that, at a jump discontinuity *t*, the Fourier series converges to the average $\frac{f(t^-)+f(t^+)}{2}$). $\frac{(+1)(t)}{2}$).

Comment. Plot the (sum of the) first few terms of the Fourier series. What do you observe? The "overshooting" is known as the Gibbs phenomenon: https://en.wikipedia.org/wiki/Gibbs_phenomenon

Comment. Set $t = \frac{\pi}{2}$ in the Fourier series we just $\frac{\pi}{2}$ in the Fourier series we just computed, to get Leibniz' series $\pi=4[1-\frac{1}{3}+\frac{1}{5}-\frac{1}{7}+...].$ For such an alternating series, the error made by stopping at the term $1/n$ is on the order of $1/n$. To compute the 768 digits of π to get to the Feynman point $(3.14159265...721134999999...)$, we would (roughly) need $1/n\!<\!10^{-768}$, or $n\!>\!10^{768}$. That's a lot of terms! (Roger Penrose, for instance, estimates that there are about 10^{80} atoms in the observable universe.)

Remark. Convergence of such series is not completely obvious! Recall, for instance, that the (odd part of) the harmonic series $1 + \frac{1}{3} + \frac{1}{5} + \frac{1}{7} + \cdots$ diverges. (On the other hand, do you remember the alternating sign test from Calculus II?)

Fourier series with general period

There is nothing special about 2π -periodic functions considered before (except that $cos(t)$ and $\sin(t)$ have fundamental period 2π). Note that $\cos(\pi t/L)$ and $\sin(\pi t/L)$ have period 2*L*.

Theorem 138. Every* $2L$ -periodic function f can be written as a **Fourier series**

$$
f(t) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left(a_n \cos\left(\frac{n\pi t}{L}\right) + b_n \sin\left(\frac{n\pi t}{L}\right) \right).
$$

Technical detail*: f needs to be, e.g., piecewise smooth.

Also, if t is a discontinuity, then the Fourier series converges to the average $\frac{f(t^-)+f(t^+)}{2}$. 2 .

The **Fourier coefficients** a_n , b_n are unique and can be computed as

$$
a_n = \frac{1}{L} \int_{-L}^{L} f(t) \cos\left(\frac{n\pi t}{L}\right) dt, \qquad b_n = \frac{1}{L} \int_{-L}^{L} f(t) \sin\left(\frac{n\pi t}{L}\right) dt.
$$

 ${\sf Comment.}$ This follows from Theorem 133 because, if $f(t)$ has period $2L$, then $\tilde f(t)\!:=\!f\!\left(\frac{L}{\pi}t\right)$ has period $2\pi.$

Example 139. Find the Fourier series of the 2-periodic function $g(t) = \{+1 \text{ for } t \in (0,1) \}$. $\int -1$ for $t \in (-1,0)$ 0 for $t = -1, 0, 1$ -1 for $t \in (-1, 0)$ $+1$ for $t \in (0,1)$. 0 for $t = -1, 0, 1$.

Solution. Instead of computing from scratch, we can use the fact that $g(t) = f(\pi t)$, with *f* as in the previous example, to get $g(t) = f(\pi t) = \sum_{n=1}^{\infty} \frac{4}{n} \sin(n \pi t)$. $\sum_{\substack{n=1 \ n \text{ odd}}}^{\infty} \frac{4}{\pi n} \sin(n \pi t).$

Fourier cosine series and Fourier sine series

Suppose we have a function $f(t)$ which is defined on a finite interval $[0, L]$. Depending on the kind of application, we can extend $f(t)$ to a periodic function in three natural ways; in each case, we can then compute a Fourier series for $f(t)$ (which will agree with $f(t)$ on $[0, L]$).

Comment. Here, we do not worry about the definition of $f(t)$ at specific individual points like $t = 0$ and $t = L$, or at jump discontinuities. Recall that, at a discontinuity, a Fourier series takes the average value.

(a) We can extend $f(t)$ to an *L*-periodic function.

In that case, we obtain the Fourier series
$$
f(t) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left(a_n \cos\left(\frac{2\pi nt}{L}\right) + b_n \sin\left(\frac{2\pi nt}{L}\right) \right)
$$
.

(b) We can extend $f(t)$ to an even 2L-periodic function.

In that case, we obtain the Fourier cosine series $f(t) = \frac{\tilde{a}_0}{2} + \sum_{n=1}^{\infty} \tilde{a}_n \rm{cos}\left(\frac{\pi n t}{L}\right)$. *L* $\sqrt{2}$.

(c) We can extend $f(t)$ to an odd $2L$ -periodic function.

In that case, we obtain the **Fourier sine series**
$$
f(t) = \sum_{n=1}^{\infty} \tilde{b}_n \sin(\frac{\pi nt}{L})
$$
.
Armin Straub

Example 140. Consider the function $f(t) = 4 - t^2$, defined for $t \in [0,2]$.

- (a) Sketch the 2-periodic extension of $f(t)$.
- (b) Sketch the 4-periodic even extension of $f(t)$.
- (c) Sketch the 4-periodic odd extension of *f*(*t*).

Solution. The 2-periodic extension as well as the 4-periodic even extension:

