Sketch of Lecture 25 Fri, 10/25/2024

Review. Theorem [116:](#page--1-0) If x_0 is an ordinary point of a linear IVP, then it is guaranteed to have a power series solution $y(x) = \sum_{n=0}^{\infty} a_n (x - x_0)^n$.

Moreover, its radius of convergence is at least the distance between $x₀$ and the closest singular point.

Example 120. Find a minimum value for the radius of convergence of a power series solution to $(x^2+4)y'' - 3xy' + \frac{1}{x+1}y = 0$ at $x = 2$.

Solution. The singular points are $x = \pm 2i, -1$. Hence, $x = 2$ is an ordinary point of the DE and the distance to the nearest singular point is $|2-2i|=\sqrt{2^2+2^2}=\sqrt{8}$ (the distances are $|2-(-1)|\!=\!3, \,|2-(\pm 2i)|\!=\!\sqrt{8}).$ By Theorem [116](#page--1-0), the DE has power series solutions about $x = 2$ with radius of convergence at least $\sqrt{8}$. .

Example 121. (caution!) Theorem [116](#page--1-0) only holds for linear DEs! For nonlinear DEs, it is very hard to predict whether there is a power series solution and what its radius of convergence is. Consider, for instance, the nonlinear DE $y'-y^2=0$.

Its coefficients have no singularities. A solution to this DE is $y(x) = \frac{1}{1-x} = \sum_{n=0}^{\infty} x^n$ (see Example [124\)](#page-1-0), which clearly has a problem at $x = 1$ (the radius of convergence is 1).

On the other hand. $y(x)$ also solves the linear DE $(1-x)y' - y = 0$ (or, even simpler, the order 0 "differential" equation $(1-x)y=1$). Note how the DE has the singular point $x=1$. Theorem [116](#page--1-0) then allows us to predict that $y(x)$ must have a power series with radius of convergence at least 1.

Example 122. (Bessel functions) Consider the DE $x^2y'' + xy' + x^2y = 0$. Derive a recursive description of a power series solutions $y(x)$ at $x=0$.

Caution! Note that $x = 0$ is a singular point (the only) of the DE. Theorem [116](#page--1-0) therefore does not guarantee a basis of power series solutions. [However, $x = 0$ is what is called a regular singular point; for these, we are guaranteed one power series solution, as well as additional solutions expressed using logarithms and power series.]

Comment. We could divide the DE by *x* (but that wouldn't really change the computations below). The reason for not dividing that x is that this DE is the special case $\alpha =0$ of the Bessel equation $x^2y''+xy'+(x^2-\alpha^2)y=0$ 0 (for which no such dividing is possible).

 ${\bf Solution.}$ (plug in power series) Let us spell out power series for x^2y, xy', x^2y'' starting with $y(x) = \sum_{n=0}^{\infty} a_n x^n$:

$$
x^{2}y(x) = \sum_{n=0}^{\infty} a_{n}x^{n+2} = \sum_{n=2}^{\infty} a_{n-2}x^{n}
$$

\n
$$
xy'(x) = \sum_{n=1}^{\infty} n a_{n}x^{n}
$$

\n
$$
x^{2}y''(x) = \sum_{n=2}^{\infty} n(n-1)a_{n}x^{n}
$$

\n
$$
x^{2}y''(x) = \sum_{n=2}^{\infty} n(n-1)a_{n}x^{n}
$$

\n
$$
x^{2}y''(x) = \sum_{n=2}^{\infty} n(n-1)a_{n}x^{n}
$$

\n
$$
x^{2}y''(x) = \sum_{n=2}^{\infty} n(n-1)a_{n}x^{n-2}
$$

\n
$$
x^{2}y''(x) = \sum_{n=2}^{\infty} n(n-1)a_{n}x^{n-2}
$$

Hence, the DE becomes $\sum_{n=2}^{\infty} n(n-1)a_n x^n + \sum_{n=1}^{\infty} n a_n x^n + \sum_{n=2}^{\infty} a_{n-2} x^n = 0$. We compare coefficients of x^n :

- $n=1$: $a_1=0$
- $n \geqslant 2$: $n(n-1)a_n + na_n + a_{n-2} = 0$, which simplifies to $n^2 a_n = -a_{n-2}$. It follows that $a_{2n} = \frac{(-1)^n}{4^n n!^2} a_0$ and $a_{2n+1} = 0$.

Observation. The fact that we found $a_1 = 0$ reflects the fact that we cannot represent the general solution through power series alone.

Comment. If $a_0 = 1$, the function we found is a Bessel function and denoted as $J_0(x) = \sum_{n=0}^{\infty} \frac{(-1)^n}{n!^2} \Big(\frac{x}{2}\Big)^{2n}$. . The more general Bessel functions $J_\alpha(x)$ are solutions to the DE $x^2y''+xy'+(x^2-\alpha^2)y=0.$

Example 123. (caution!) Consider the linear DE $x^2y' = y - x$. Does it have a convergent power series solution at $x = 0$?

 ${\sf Important\ note.}$ The DE x^2y' $=$ y x has the singular point x $=$ 0 . Hence, Theorem 116 does not apply. Advanced. Moreover, in contrast to the previous example, $x = 0$ is not a regular singular point. Indeed, as we see below, there is no power series solution of the DE at all.

Solution. Let us look for a power series solution $y(x) = \sum_{n=0}^{\infty} a_n x^n$. $x^2y'(x) = x^2\sum_{n=1}^{\infty} n a_n x^{n-1} = \sum_{n=1}^{\infty} n a_n x^{n+1} = \sum_{n=2}^{\infty} (n-1)a_{n-1}x^n$ $na_n x^{n-1} = \sum_{n=1}^{\infty} n a_n x^{n+1} = \sum_{n=2}^{\infty} (n-1) a_{n-1} x^n$ $na_n x^{n+1} = \sum_{n=2}^{\infty} (n-1)a_{n-1}x^n$ $(n-1)a_{n-1}x^n$ *n* Hence, $x^2y' = y - x$ becomes $\sum_{n=2}^{\infty} (n-1)a_{n-1}x^n = \sum_{n=0}^{\infty} a_nx^n - x$. We compare coefficients of x^n :

- $n = 0$: $a_0 = 0$.
- $n=1$: $0=a_1-1$, so that $a_1=1$.
- $n \geq 2$: $(n-1)a_{n-1} = a_n$, from which it follows that $a_n = (n-1)a_{n-1} = (n-1)(n-2)a_{n-2} = \cdots =$ $(n-1)!a_1 = (n-1)!$.

Hence the DE has the "formal" power series solution $y(x) = \sum_{n=1}^{\infty}$ $(n-1)!x^n$.

However, that series is divergent for all $x \neq 0$; that is, the radius of convergence is 0.

Inverses of power series

Example 124. (geometric series)
$$
\sum_{n=0}^{\infty} x^n = \frac{1}{1-x}
$$

Why? If $y(x) = \sum_{n=0}^{\infty} x^n$, then $xy = y - 1$ (write down the power series for both sides!). Hence, $y = \frac{1}{1-x}$. $1 - x$. Alternatively, start with $y=\frac{1}{1-x}$ and note that y solves $\frac{1}{1-x}$ and note that *y* solves the order 0 "differential" (inhomogeneous) equation $(1-x)y = 1.$ We can then determine a power series solution as we did in Example [112](#page--1-1) to find $y = \sum_{n=0}^\infty x^n.$

Example 125. Derive a recursive description of the power series for $y(x) = \frac{1}{1 - x^2}$. $1 - x - x^2$ 2^+ .

 ${\bf Solution.}$ Note that $y(x)$ satisfies the "differential" equation $(1-x-x^2)y=1$ of order 0 (as such, we need 0 initial conditions). We can therefore determine a power series solution as we did in Example [112:](#page--1-1)

Write
$$
y(x) = \sum_{n=0}^{\infty} a_n x^n
$$
. Then
\n
$$
1 = (1 - x - x^2) \sum_{n=0}^{\infty} a_n x^n = \sum_{\substack{n=0 \ \infty}}^{\infty} a_n x^n - \sum_{\substack{n=0 \ \infty}}^{\infty} a_n x^{n+1} - \sum_{\substack{n=0 \ \infty}}^{\infty} a_n x^{n+2}
$$
\n
$$
= \sum_{n=0}^{\infty} a_n x^n - \sum_{n=1}^{\infty} a_{n-1} x^n - \sum_{n=2}^{\infty} a_{n-2} x^n.
$$

We compare coefficients of x^n :

- $n = 0$: $1 = a_0$.
- $n=1$: $0 = a_1 a_0$, so that $a_1 = a_0 = 1$.
- $n \ge 2$: $0 = a_n a_{n-1} a_{n-2}$ or, equivalently, $a_n = a_{n-1} + a_{n-2}$.

This is the recursive description of the Fibonacci numbers $F_n!$ In particular $a_n = F_n$.

n+2

The first few terms. $\frac{1}{1-x-x^2} = 1 + x + 2x^2 + 3x^3 + 5x^4 + 8x^5 + 13x^6 + ...$

Comment. The function $y(x)$ is said to be a **generating function** for the Fibonacci numbers. Challenge. Can you rederive Binet's formula from partial fractions and the geometric series?

Example 126. (HW) Derive a recursive description of the power series for $y(x) = \frac{1+7x}{1-x-9x^2}$. $1 - x - 2x^2$.

Solution. Write $y(x) = \sum_{n=0}^{\infty} a_n x^n$. Then

$$
1 + 7x = (1 - x - 2x^{2}) \sum_{n=0}^{\infty} a_{n}x^{n} = \sum_{\substack{n=0 \ n \geq 0}}^{\infty} a_{n}x^{n} - \sum_{\substack{n=0 \ n \geq 0}}^{\infty} a_{n}x^{n+1} - 2 \sum_{\substack{n=0 \ n \geq 0}}^{\infty} a_{n}x^{n+2}
$$

$$
= \sum_{n=0}^{\infty} a_{n}x^{n} - \sum_{n=1}^{\infty} a_{n-1}x^{n} - 2 \sum_{n=2}^{\infty} a_{n-2}x^{n}.
$$

We compare coefficients of x^n :

- $n = 0$: $1 = a_0$.
- $n=1$: $7=a_1-a_0$, so that $a_1=7+a_0=8$.
- $n \geqslant 2$: $0 = a_n a_{n-1} 2a_{n-2}$.

If we prefer, we can rewrite the final recurrence as $a_{n+2} - a_{n+1} - 2a_n = 0$ for $n \ge 0$. The initial conditions are $a_0 = 1$, $a_1 = 8$.

Comment. In terms of the recurrence operator *N*, the recurrence is $(N^2 - N - 2)a_n = 0$.

Comment. As in Example [53,](#page--1-2) we can solve this recurrence and obtain a Binet-like formula for *an*. In this particular case, we find $a_n = 3 \cdot 2^n - 2(-1)^n$.