Once we have a power series solution y(x), a natural question is: for which x does the series converge?

Recall. A power series $y(x) = \sum_{n=0}^{\infty} a_n (x - x_0)^n$ has a radius of convergence R.

The series converges for all x with $|x-x_0| < R$ and it diverges for all x with $|x-x_0| > R$.

Definition 113. Consider the linear DE $y^{(n)} + p_{n-1}(x) y^{(n-1)} + ... + p_1(x) y' + p_0(x) y = f(x)$. x_0 is called an **ordinary point** if the coefficients $p_j(x)$, as well as f(x), are analytic at $x = x_0$. Otherwise, x_0 is called a **singular point**.

Example 114. Determine the singular points of $(x+2)y'' - x^2y' + 3y = 0$.

Solution. Rewriting the DE as $y'' - \frac{x^2}{x+2}y' + \frac{3}{x+2}y = 0$, we see that the only singular point is x = -2.

Example 115. Determine the singular points of $(x^2+1)y'''=\frac{y}{x-5}$.

Solution. Rewriting the DE as $y''' - \frac{1}{(x-5)(x^2+1)}y = 0$, we see that the singular points are $x = \pm i, 5$.

Theorem 116. Consider the linear DE $y^{(n)} + p_{n-1}(x) y^{(n-1)} + ... + p_1(x) y' + p_0(x) y = f(x)$.

Suppose that x_0 is an ordinary point and that R is the distance to the closest singular point.

Then any IVP specifying $y(x_0)$, $y'(x_0)$, ..., $y^{(n-1)}(x_0)$ has a power series solution $y(x) = \sum_{n=0}^{\infty} a_n (x-x_0)^n$ and that series has radius of convergence at least R.

In particular. The DE has a general solution consisting of n solutions y(x) that are analytic at $x=x_0$.

Comment. Most textbooks only discuss the case of 2nd order DEs. For a discussion of the higher order case (in terms of first order systems!) see, for instance, Chapter 4.5 in *Ordinary Differential Equations* by N. Lebovitz.

The book is freely available at: http://people.cs.uchicago.edu/~lebovitz/odes.html

Example 117. Find a minimum value for the radius of convergence of a power series solution to $(x+2)y''-x^2y'+3y=0$ at x=3.

Solution. As before, rewriting the DE as $y'' - \frac{x^2}{x+2}y' + \frac{3}{x+2}y = 0$, we see that the only singular point is x = -2.

Note that x=3 is an ordinary point of the DE and that the distance to the singular point is |3-(-2)|=5.

Hence, the DE has power series solutions about x=3 with radius of convergence at least 5.

Example 118. Find a minimum value for the radius of convergence of a power series solution to $(x^2+1)y'''=\frac{y}{x-5}$ at x=2.

Solution. As before, rewriting the DE as $y''' - \frac{1}{(x-5)(x^2+1)}y = 0$, we see that the singular points are $x = \pm i, 5$.

Note that x=2 is an ordinary point of the DE and that the distance to the nearest singular point is $|2-i|=\sqrt{5}$ (the distances are |2-5|=3, $|2-i|=|2-(-i)|=\sqrt{2^2+1^2}=\sqrt{5}$).

Hence, the DE has power series solutions about x=2 with radius of convergence at least $\sqrt{5}$.

Example 119. (Airy equation, once more) Let y(x) be the solution to the IVP y'' = xy, y(0) = a, y'(0) = b. Earlier, we determined the power series of y(x). What is its radius of convergence?

Solution. y'' = xy has no singular points. Hence, the radius of convergence is ∞ . (In other words, the power series converges for all x.)