
Sketch of Lecture 20 Mon, 10/14/2024

In the special case that �(t)= eAt, some things become easier. For instance, �(t)¡1= e¡At. In
that case, we can explicitely write down solutions to IVPs:

� y 0=Ay, y(0)= c has (unique) solution y(t)= eAtc.

� y 0=Ay+ f(t), y(0)= c has (unique) solution y(t)= eAtc+ eAt
R
0

t
e¡Asf(s)ds.

Example 98. Let A=
�

1 2
¡1 4

�
.

(a) Determine eAt.

(b) Solve y 0=Ay, y(0)=
�
1
2

�
.

(c) Solve y 0=Ay+
"

0
2et

#
, y(0)=

�
1
2

�
.

Solution.

(a) By proceeding as in Example 73 (do it!), we find eAt=
"
2e2t¡ e3t ¡2e2t+2e3t

e2t¡ e3t ¡e2t+2e3t

#
.

(b) y(t)= eAt
�
1
2

�
=

"
¡2e2t+3e3t

¡e2t+3e3t

#

(c) y(t)= eAt
�
1
2

�
+ eAt

R
0
t
e¡Asf(s)ds. We compute:R

0

t
e¡Asf(s)ds=

R
0

t
"
2e¡2s¡ e¡3s ¡2e¡2s+2e¡3s

e¡2s¡ e¡3s ¡e¡2s+2e¡3s

#�
0
2es

�
ds=

R
0

t
"
¡4e¡s+4e¡2s

¡2e¡s+4e¡2s

#
ds=

"
4e¡t¡ 2e¡2t¡ 2
2e¡t¡ 2e¡2t

#

Hence, eAt
R
0
t
e¡Asf(s)ds=

"
2e2t¡ e3t ¡2e2t+2e3t

e2t¡ e3t ¡e2t+2e3t

#"
4e¡t¡ 2e¡2t¡ 2
2e¡t¡ 2e¡2t

#
=

"
2et¡ 4e2t+2e3t

¡2e2t+2e3t

#
.

Finally, y(t)=
"
¡2e2t+3e3t

¡e2t+3e3t

#
+

"
2et¡ 4e2t+2e3t

¡2e2t+2e3t

#
=

"
2et¡ 6e2t+5e3t

¡3e2t+5e3t

#
.

Sage. Here is how we can let Sage do these computations for us:

>>> s, t = var('s, t')

>>> A = matrix([[1,2],[-1,4]])

>>> y = exp(A*t)*vector([1,2]) + exp(A*t)*integrate(exp(-A*s)*vector([0,2*e^s]), s,0,t)

>>> y.simplify_full()

(5 e(3 t)¡ 6 e(2 t)+2 et; 5 e(3 t)¡ 3 e(2 t))

Comment. Can you see that the solution is of the form that we anticipate from the method of undeter-
mined coefficients?
Indeed, y(t)= yp(t)+ yh(t) where the simplest particular solution is yp(t)=

�
2et

0

�
.

Armin Straub
straub@southalabama.edu

48



Modeling & Applications

Mixing problems

Example 99. Consider two brine tanks. Tank T1 contains 24gal water containing 3lb salt, and
tank T2 contains 9gal pure water.

� T1 is being filled with 54gal/min water containing 0.5lb/gal salt.

� 72gal/min well-mixed solution flows out of T1 into T2.

� 18gal/min well-mixed solution flows out of T2 into T1.

� Finally, 54gal/min well-mixed solution is leaving T2.

We wish to understand how much salt is in the tanks after t minutes.

(a) Derive a system of differential equations.

(b) Determine the equilibrium points and classify their stability. What does this mean here?

(c) Solve the system to find explicit formulas for how much salt is in the tanks after t minutes.

Solution.

(a) Note that the amount of water in each tank is constant because the flows balance each other.
Let yi(t) denote the amount of salt (in lb) in tank Ti after time t (in min). In time interval [t; t+�t]:

�y1� 54 � 1
2
��t¡ 72 � y1

24
��t+ 18 � y2

9
��t, so y10 = 27¡ 3y1+2y2. Also, y1(0)= 3.

�y2� 72 � y124 ��t¡ 72 � y2
9
��t, so y20 =3y1¡ 8y2. Also, y2(0)=0.

Using matrix notation and writing y=
�
y1
y2

�
, this is d

dt
y=

�
¡3 2
3 ¡8

�
y+

�
27
0

�
, y(0)=

�
3
0

�
.

(b) Note that this system is autonomous! Otherwise, we could not pursue our stability analysis.

To find the equilibrium point (since the system is linear, there should be just one), we set d

dt
y=

�
0
0

�
and

solve
�
¡3 2
3 ¡8

�
y+

�
27
0

�
=

�
0
0

�
. We find y=

�
¡3 2
3 ¡8

�¡1� ¡27
0

�
=

�
12
4.5

�
.

The characteristic polynomial of
�
¡3 2
3 ¡8

�
is (¡3¡�)(¡8¡�)¡ 6=�2+ 11�+ 18=(�+9)(�+2).

Hence, the eigenvalues are ¡9; ¡2. Since they are both negative, the equilibrium point is a nodal sink
and, in particular, asymptotically stable.
Having an equilibrium point at (12;4.5), means that, if the salt amounts are y1=12, y2=4.5, then they
won't change over time (but will remain unchanged at these levels). The fact that it is asymptotically
stable means that salt amounts close to these balanced levels will, over time, approach the equilibrium
levels. (Because the system is linear, this is also true for levels that are not �close�.)
We could have �seen� the equilibrium point!
Indeed, noticing that, for a constant (equilibrium) particular solution y, each tank has to have a constant
concentration of 0.5lb/gal of salt, we find directly y= 0.5

�
24
9

�
=

�
12
4.5

�
.

(c) This is an IVP that we can solve (with some work). Do it! For instance, we can apply variation of constants.
(Alternatively, leverage our particular solution from the previous part!) Skipping most work, we find:

� If A=
�
¡3 2
3 ¡8

�
, then eAt= 1

7

"
e¡9t+6e¡2t ¡2e¡9t+2e¡2t

¡3e¡9t+3e¡2t 6e¡9t+1e¡2t

#

� y= eAt
�
1
0

�
+ eAt

R
0
t
e¡As

�
27
0

�
ds=

1

7

"
e¡9t+6e¡2t

¡3e¡9t+3e¡2t

#
+

3

14
eAt

"
2e9t+ 54e2t¡ 56
¡6e9t+ 27e2t¡ 21

#
=

"
12¡ 9e¡2t

4.5¡ 4.5e¡2t

#
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