
Notes for Lecture 17 Fri, 10/4/2024

Review: Linearizations of nonlinear functions (cont'd)

Recall from Calculus I that a function f(x) around a point x0 has the linearization

f(x)� f(x0)+ f 0(x0)(x¡x0):

Here, the right-hand side is the linearization and we also know it as the tangent line to f(x) at x0.

Recall from Calculus III that a function f(x; y) around a point (x0; y0) has the linearization

f(x; y)� f(x0; y0)+ fx(x0; y0)(x¡x0)+ fy(x0; y0)(y¡ y0):

Again, the right-hand side is the linearization. This time, it describes the tangent plane to f(x; y) at (x0; y0).

Recall that fx=
@

@x
f(x; y) and fy=

@

@y
f(x; y) are the partial derivatives of f .

Example 89. Determine the linearization of the function 3+2xy2 at (2; 1).
Solution. If f(x; y)= 3+2xy2, then fx=2y2 and fy=4xy. In particular, fx(2; 1)=2 and fy(2; 1)= 8.
Accordingly, the linearization is f(2; 1)+ fx(2; 1)(x¡ 2)+ fy(2; 1)(y¡ 1)=7+2(x¡ 2)+ 8(y¡ 1).

It follows that a vector function f(x; y)=
�
f(x; y)
g(x; y)

�
around a point (x0; y0) has the linearization

�
f(x; y)
g(x; y)

�
�
�
f(x0; y0)
g(x0; y0)

�
+
�
fx(x0; y0)
gx(x0; y0)

�
(x¡x0)+

"
fy(x0; y0)
gy(x0; y0)

#
(y¡ y0)

=
�
f(x0; y0)
g(x0; y0)

�
+

"
fx(x0; y0) fy(x0; y0)
gx(x0; y0) gy(x0; y0)

#
=J(x0;y0)

�
x¡x0
y¡ y0

�
:

The matrix J(x; y)=
"
fx fy
gx gy

#
is called the Jacobian matrix of f(x; y).

Example 90. Determine the linearization of the vector function
"

3+ 2xy2

x(y3¡ 2x)

#
at (2; 1).

Solution. If
�
f(x; y)
g(x; y)

�
=

"
3+2xy2

x(y3¡ 2x)

#
, then the Jacobian matrix is

J(x; y)=

"
fx fy
gx gy

#
=

"
2y2 4xy

y3¡ 4x 3xy2

#
:

In particular, J(2; 1)=
�

2 8
¡7 6

�
. The linearization is

�
f(2; 1)
g(2; 1)

�
+ J(2; 1)

�
x¡ 2
y¡ 1

�
=
�

7
¡6

�
+
�

2 8
¡7 6

��
x¡ 2
y¡ 1

�
.

Important comment. If we multiply out the matrix-vector product, then we get
�

7+2(x¡ 2)+ 8(y¡ 1)
¡6¡ 7(x¡ 2)+ 6(y¡ 1)

�
.

In the first component we get exactly what we got for the linearization of f(x; y) in the previous example.
Likewise, the second component is the linearization of g(x; y) by itself.
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Stability of nonlinear autonomous systems

We now observe that we can (typically) determine the stability of an equilibrium point of a
nonlinear system by simply linearizing at that point.

(stability of autonomous nonlinear 2-dimensional systems)

Suppose that (x0; y0) is an equilibrium point of the system d

dt

�
x
y

�
=
�
f(x; y)
g(x; y)

�
.

If the Jacobian matrix J(x0; y0) is invertible, then its eigenvalues determine the stability and
behaviour of the equlibrium point as for a linear system except in the following cases:

� If the eigenvalues are pure imaginary, we cannot predict stability (the equilibrium point could be either
a center or a spiral source/sink; whereas the equilibrium point of the linearization is a center).

� If the eigenvalues are real and equal, then the equilibrium point could be either nodal or spiral (whereas
the linearization has a nodal equilibrium point). The stability, however, is the same.

Comment. We need the Jacobian matrix J(x0; y0) to be invertible, so that the linearized system has a unique
equilibrium point.

Plot, for instance, the phase portrait of d

dt

�
x
y

�
=
�
(x¡ 2y)x
(x¡ 2)y

�
.

Purely imaginary eigenvalues? The issue with pure imaginary eigenvalues here comes from the fact that the
linearization is only an approximation, with the true (nonlinear) behaviour slightly deviating. Slightly perturbing
purely imaginary roots can also lead to (small but) positive real part (unstable; spiral source) or negative real
part (asymptotically stable; spiral sink).
Real repeated eigenvalue? The issue with a real repeated eigenvalue is similar. Slightly perturbing such a root
can lead to real eigenvalues (nodal) or a pair of complex conjugate eigenvalues (spiral). However, the real part
of these perturbations still has the same sign so that we can still predict the stability itself.

Example 91. (cont'd) Consider again the system dx

dt
= x � (y ¡ 1), dy

dt
= y � (x ¡ 1). Without

consulting a plot, determine the equilibrium points and classify their stability.
Solution. See Example 79 for the phase portrait. However, we will not use it in the following.
To find the equilibrium points, we solve x(y¡ 1)= 0 (that is, x=0 or y=1) and y(x¡ 1)= 0 (that is, x=1
or y=0). We conclude that the equilibrium points are (0; 0) and (1; 1).

Our system is d

dt

�
x
y

�
=
�
f(x; y)
g(x; y)

�
with

�
f(x; y)
g(x; y)

�
=
�
x � (y¡ 1)
y � (x¡ 1)

�
.

The Jacobian matrix is J(x; y)=
"
fx fy
gx gy

#
=
�
y¡ 1 x
y x¡ 1

�
.

� At (0; 0), the Jacobian matrix is J(0; 0)=
�
¡1 0
0 ¡1

�
. We can read off that the eigenvalues are ¡1;¡1.

Since they are both negative, (0; 0) is a nodal sink. In particular, (0; 0) is asymptotically stable.

� At (1; 1), the Jacobian matrix is J(1; 1)=
�
0 1
1 0

�
.

The characteristic polynomial is det
��
¡� 1
1 ¡�

��
=�2¡1, which has roots�1. These are the eigenvalues.

Since one is positive and the other is negative, (1; 1) is a saddle. In particular, (1; 1) is unstable.
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