Review. In Example [81,](#page--1-0) we considered the system $\frac{\mathrm{d}x}{\mathrm{d}t} = y - 5x$, $\frac{\mathrm{d}y}{\mathrm{d}t} = 4x - 2y$. We found that it has general solution $\left\lceil \frac{x(t)}{y(t)} \right\rceil = C_1 \left\lceil \frac{1}{4} \right\rceil e^{-t} + C_2 \left\lceil \frac{-1}{1} \right\rceil e^{-6t}.$ $\frac{1}{4}$ $\left| e^{-t} + C_2 \right| \left. \frac{-1}{1} \right| e^{-6t}.$. In particular, the only equilibrium point is $(0,0)$ and it is asymptotically stable.

The following example is an inhomogeneous version of Example 81 :

Example 85. Analyze the system $\frac{dx}{dt} = y - 5x + 3$, $\frac{dy}{dt} = 4x - 2y$. In particular, determine the general solution as well as all equilibrium points and their stability. Solution. As reviewed above, we looked at the corresponding homogeneous system in Example [81](#page--1-0) and found that its general solution is $\begin{bmatrix} x(t) \ y(t) \end{bmatrix} = C_1 \begin{bmatrix} 1 \ 4 \end{bmatrix} e^{-t} + C_2 \begin{bmatrix} -1 \ 1 \end{bmatrix} e^{-6t}.$ $\frac{1}{4} \left[e^{-t} + C_2 \right] \frac{-1}{1} \left[e^{-6t} \right]$. Note that we can write the present system in matrix form as $\begin{bmatrix} x \\ y \end{bmatrix}^T = M \begin{bmatrix} x \\ y \end{bmatrix} + \begin{bmatrix} 3 \\ 0 \end{bmatrix}$ with $\begin{bmatrix} x \\ y \end{bmatrix}' = M \begin{bmatrix} x \\ y \end{bmatrix} + \begin{bmatrix} 3 \\ 0 \end{bmatrix}$ with $M = \begin{bmatrix} -5 & 1 \\ 4 & -2 \end{bmatrix}$. $\begin{bmatrix} x \\ y \end{bmatrix} + \begin{bmatrix} 3 \\ 0 \end{bmatrix}$ with $M = \begin{bmatrix} -5 & 1 \\ 4 & -2 \end{bmatrix}$. $4 -2$ \mathbf{I} and \mathbf{I} and \mathbf{I} . To find the equilibrium point, we solve $M\Big[\begin{array}{c} x \ y \end{array}\Big] + \Big[\begin{array}{c} 3 \ 0 \end{array}\Big] = 0$ to find $\Big[\begin{array}{c} x \ x \end{array}\Big] = -M^{-1}$ $\begin{bmatrix} x\ y \end{bmatrix} + \begin{bmatrix} 3\ 0 \end{bmatrix} = 0$ to find $\begin{bmatrix} x\ y \end{bmatrix} = -M^{-1}$ $\begin{bmatrix} 3 \ 0 \end{bmatrix} = 0$ to find $\begin{bmatrix} x \ y \end{bmatrix} = -M^{-1} \begin{bmatrix} 3 \ 0 \end{bmatrix} = 0$ $\begin{bmatrix} x \\ y \end{bmatrix} = -M^{-1} \begin{bmatrix} 3 \\ 0 \end{bmatrix} = -\frac{1}{6} \begin{bmatrix} -2 & -1 \\ -4 & -5 \end{bmatrix}$ $\begin{bmatrix} 3 \\ 0 \end{bmatrix} = -\frac{1}{6} \begin{bmatrix} -2 & -1 \\ -4 & -5 \end{bmatrix} \begin{bmatrix} 3 \\ 0 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}.$ $\frac{1}{6} \begin{bmatrix} -2 & -1 \\ -4 & -5 \end{bmatrix} \begin{bmatrix} 3 \\ 0 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}.$ -4 -5 $\begin{bmatrix} 0 \end{bmatrix}$ $\begin{bmatrix} 2 \end{bmatrix}$ $\begin{bmatrix} 3 & 2 \\ 1 & 1 \end{bmatrix}$ $\begin{bmatrix} 3 \\ 0 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}.$ $2 \mid$ \mathbf{I} and \mathbf{I} and \mathbf{I} . The fact that $\left[\frac{1}{2}\right]$ is an equilibriu $\Big\vert$ is an equilibrium point means that $\Big\lceil \frac{x}{y} \Big\rceil = \Big\lceil \frac{1}{2} \Big\rceil$ is a particular solution! 2 \vert \sim μ μ and μ $\big]$ is a particular solution! (Make sure that you see that it has exactly the form we expect from the method of undetermined coefficients!)

Thus, the general solution must be $\left[\begin{array}{c} x(t) \\ y(t) \end{array}\right] = \left[\begin{array}{c} 1 \\ 2 \end{array}\right] + C_1 \left[\begin{array}{c} 1 \\ 4 \end{array}\right] e^{-t} + C_2 \left[\begin{array}{c} -1 \\ 1 \end{array}\right]$ $\binom{1}{2} + C_1 \binom{1}{4} e^{-t} + C_2 \binom{-1}{1} e^{-6t}$ (t $\frac{1}{4}\left[e^{-t}+C_2\right]\left[\frac{-1}{1}\right]e^{-6t}$ (that is, the particular solution plus the general solution of the homogeneous system that we solved in Example [81\)](#page--1-0). $\mathbf{1}$ and $\mathbf{1}$ and $\mathbf{1}$

As a result, the phase portrait is going to look just as in Example [81](#page--1-0) but shifted by $\left\lceil \frac{1}{2} \right\rceil$: $2 \mid$:

Because both eigenvalues $(-1$ and $-6)$ are negative, $\left\lceil \frac{1}{2} \right\rceil$ is an asympto $\big]$ is an asymptotically stable equilibrium point. More precisely, it is what is called a nodal source.

As we have started to observe, the eigenvalues determine the stability of the equilibrium point in the case of an autonomous linear 2-dimensional systems. The following table gives an overview.

 \bm{l} mportant. Note that such a system must be of the form $\frac{\mathrm{d}}{\mathrm{d}t}\Bigl[\begin{array}{c} x \ y \end{array}\Bigr]=M\Bigl[\begin{array}{c} x \ y \end{array}\Bigr]+{\bm{c}},$ where ${\bm{c}}=\Bigl[\begin{array}{c} c_1 \ c_2 \end{array}\Bigr]$ is a consta $\left\{\begin{array}{c} x \ y \end{array}\right\} + \bm{c}$, where $\bm{c} = \left[\begin{array}{c} c_1 \ c_2 \end{array}\right]$ is a constant vector. Because the system is autonomous, the matrix *M* and the inhomogeneous part *c* cannot depend on *t*.

(stability of autonomous linear 2-dimensional systems)

Review: Linearizations of nonlinear functions

Recall from Calculus I that a function $f(x)$ around a point x_0 has the linearization

$$
f(x) \approx f(x_0) + f'(x_0)(x - x_0).
$$

Here, the right-hand side is the linearization and we also know it as the tangent line to $f(x)$ at x_0 .

Recall from Calculus III that a function $f(x, y)$ around a point (x_0, y_0) has the linearization

$$
f(x, y) \approx f(x_0, y_0) + f_x(x_0, y_0)(x - x_0) + f_y(x_0, y_0)(y - y_0).
$$

Again, the right-hand side is the linearization. This time, it describes the tangent plane to $f(x, y)$ at (x_0, y_0) . Recall that $f_x = \frac{\partial}{\partial x} f(x, y)$ and $f_y = \frac{\partial}{\partial y} f(x, y)$ $\frac{\partial}{\partial x} f(x,y)$ and $f_y = \frac{\partial}{\partial y} f(x,y)$ are the partial derivatives of $f.$

Example 86. Determine the linearization of the function $3 + 2xy^2$ at $(2,1)$. Solution. If $f(x,y)=3+2xy^2$, then $f_x=2y^2$ and $f_y=4xy$. In particular, $f_x(2,1)=2$ and $f_y(2,1)=8.$ Accordingly, the linearization is $f(2,1) + f_x(2,1)(x-2) + f_y(2,1)(y-1) = 7 + 2(x-2) + 8(y-1)$.