Review. In Example 81, we considered the system $\frac{dx}{dt} = y - 5x$, $\frac{dy}{dt} = 4x - 2y$. We found that it has general solution $\begin{bmatrix} x(t)\\ y(t) \end{bmatrix} = C_1 \begin{bmatrix} 1\\ 4 \end{bmatrix} e^{-t} + C_2 \begin{bmatrix} -1\\ 1 \end{bmatrix} e^{-6t}$. In particular, the only equilibrium point is (0,0) and it is asymptotically stable.

The following example is an inhomogeneous version of Example 81:

Example 85. Analyze the system $\frac{dx}{dt} = y - 5x + 3$, $\frac{dy}{dt} = 4x - 2y$. In particular, determine the general solution as well as all equilibrium points and their stability. **Solution.** As reviewed above, we looked at the corresponding homogeneous system in Example 81 and found that its general solution is $\begin{bmatrix} x(t) \\ y(t) \end{bmatrix} = C_1 \begin{bmatrix} 1 \\ 4 \end{bmatrix} e^{-t} + C_2 \begin{bmatrix} -1 \\ 1 \end{bmatrix} e^{-6t}$. Note that we can write the present system in matrix form as $\begin{bmatrix} x \\ y \end{bmatrix}' = M \begin{bmatrix} x \\ y \end{bmatrix} + \begin{bmatrix} 3 \\ 0 \end{bmatrix}$ with $M = \begin{bmatrix} -5 & 1 \\ 4 & -2 \end{bmatrix}$. To find the equilibrium point, we solve $M \begin{bmatrix} x \\ y \end{bmatrix} + \begin{bmatrix} 3 \\ 0 \end{bmatrix} = 0$ to find $\begin{bmatrix} x \\ y \end{bmatrix} = -M^{-1} \begin{bmatrix} 3 \\ 0 \end{bmatrix} = -\frac{1}{6} \begin{bmatrix} -2 & -1 \\ -4 & -5 \end{bmatrix} \begin{bmatrix} 3 \\ 0 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$. The fact that $\begin{bmatrix} 1 \\ 2 \end{bmatrix}$ is an equilibrium point means that $\begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$ is a particular solution! (Make sure that you see that it has exactly the form we expect from the method of undetermined coefficients!)

Thus, the general solution must be $\begin{bmatrix} x(t) \\ y(t) \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \end{bmatrix} + C_1 \begin{bmatrix} 1 \\ 4 \end{bmatrix} e^{-t} + C_2 \begin{bmatrix} -1 \\ 1 \end{bmatrix} e^{-6t}$ (that is, the particular solution plus the general solution of the homogeneous system that we solved in Example 81).

As a result, the phase portrait is going to look just as in Example 81 but shifted by $\begin{bmatrix} 1\\2 \end{bmatrix}$:

Because both eigenvalues (-1 and -6) are negative, $\begin{bmatrix} 1\\2 \end{bmatrix}$ is an asymptotically stable equilibrium point. More precisely, it is what is called a **nodal source**.

As we have started to observe, the eigenvalues determine the stability of the equilibrium point in the case of an autonomous linear 2-dimensional systems. The following table gives an overview.

Important. Note that such a system must be of the form $\frac{d}{dt} \begin{bmatrix} x \\ y \end{bmatrix} = M \begin{bmatrix} x \\ y \end{bmatrix} + c$, where $c = \begin{bmatrix} c_1 \\ c_2 \end{bmatrix}$ is a constant vector. Because the system is autonomous, the matrix M and the inhomogeneous part c cannot depend on t.

eigenvalues	behaviour	stability
real and both positive	nodal source	unstable
real and both negative	nodal sink	asymptotically stable
real and opposite signs	saddle	unstable
complex with positive real part	spiral source	unstable
complex with negative real part	spiral sink	asymptotically stable
purely imaginary	center point	stable but not asymptotically stable

(stability of autonomous linear 2-dimensional systems)

Review: Linearizations of nonlinear functions

Recall from Calculus I that a function f(x) around a point x_0 has the linearization

$$f(x) \approx f(x_0) + f'(x_0)(x - x_0).$$

Here, the right-hand side is the linearization and we also know it as the tangent line to f(x) at x_0 .

Recall from Calculus III that a function f(x, y) around a point (x_0, y_0) has the linearization

$$f(x, y) \approx f(x_0, y_0) + f_x(x_0, y_0)(x - x_0) + f_y(x_0, y_0)(y - y_0)$$

Again, the right-hand side is the linearization. This time, it describes the tangent plane to f(x, y) at (x_0, y_0) . Recall that $f_x = \frac{\partial}{\partial x} f(x, y)$ and $f_y = \frac{\partial}{\partial y} f(x, y)$ are the partial derivatives of f.

Example 86. Determine the linearization of the function $3 + 2xy^2$ at (2, 1). Solution. If $f(x, y) = 3 + 2xy^2$, then $f_x = 2y^2$ and $f_y = 4xy$. In particular, $f_x(2, 1) = 2$ and $f_y(2, 1) = 8$. Accordingly, the linearization is $f(2, 1) + f_x(2, 1)(x - 2) + f_y(2, 1)(y - 1) = 7 + 2(x - 2) + 8(y - 1)$.