Phase portraits of autonomous linear differential equations

Example 81. Consider the system $\frac{dx}{dt} = y - 5x$, $\frac{dy}{dt} = 4x - 2y$.

- (a) Determine the general solution.
- (b) Make a phase portrait. Can you connect it with the general solution?
- (c) Determine all equilibrium points and their stability.

Solution.

- (a) Note that we can write this is in matrix form as $\begin{bmatrix} x \\ y \end{bmatrix}' = M \begin{bmatrix} x \\ y \end{bmatrix}$ with $M = \begin{bmatrix} x \\ y \end{bmatrix}$ $\begin{bmatrix} x \\ y \end{bmatrix}' = M \begin{bmatrix} x \\ y \end{bmatrix}$ with $M = \begin{bmatrix} -5 & 1 \\ 4 & -2 \end{bmatrix}$. $\begin{bmatrix} x \ y \end{bmatrix}$ with $M = \begin{bmatrix} -5 & 1 \ 4 & -2 \end{bmatrix}$. 4 *¡*2 \mathbf{I} and \mathbf{I} and \mathbf{I} . M has -1 -eigenvector $\left\lceil \frac{1}{4} \right\rceil$ as well as -6 -eigenvector $\left\lceil \frac{-1}{1} \right\rceil$. \mathbf{I} and \mathbf{I} and \mathbf{I} . Hence, the general solution is $\begin{bmatrix} x(t) \\ y(t) \end{bmatrix} = C_1 \begin{bmatrix} 1 \\ 4 \end{bmatrix} e^{-t} + C_2 \begin{bmatrix} -1 \\ 1 \end{bmatrix} e^{-6t}.$ $\frac{1}{4}$ $\left| e^{-t} + C_2 \right| \left. \frac{-1}{1} \right| e^{-6t}.$.
- (b) We can have Sage make such a plot for us:

```
\gg x,y = var('x y')
streamline_plot((-5*x+y,4*x-2*y), (x,-4,4), (y,-4,4))
```
Question. In our plot, we also highlighted two lines through the origin. Can you explain their significance?

Explanation. The lines correspond to the special solutions \cup $C_1\begin{bmatrix} 1 \ 4 \end{bmatrix}e^{-t}$ (green) an $\frac{1}{4}\left|e^{-t}\right\rangle$ (green) and $C_2\left\lceil\frac{-1}{1}\right\rceil$ e^{-6t} (orange). For each, $\left\lceil\frac{2}{\sqrt{2}}\right\rceil$ the trajectories consist of points that are multiples of the the the the \setminus vectors $\begin{bmatrix} 1 \\ 4 \end{bmatrix}$ and $\begin{bmatrix} -1 \\ 1 \end{bmatrix}$, res $\left[\begin{array}{c} 1 \\ 4 \end{array}\right]$ and $\left[\begin{array}{c} -1 \\ 1 \end{array}\right]$, respectively. , respectively.

Note that each such solution starts at a point on one of the lines and then "flows" into the origin. (Because e^{-t} and e^{-6t} approach zero for large t .)

Question. Consider a point like (4*;* 4). Can you explain why the trajectory through that point doesn't go somewhat straight to (0*;* 0) but rather flows nearly parallel the orange line towards the green line? Explanation. A solution through $(4,4)$ is of the form $\begin{bmatrix} x(t) \ y(t) \end{bmatrix} = C_1 \begin{bmatrix} 1 \ 4 \end{bmatrix} e^{-t} + C_2 \begin{bmatrix} -1 \ 1 \end{bmatrix}$ $\frac{1}{4}\left[e^{-t}+C_2\right]^{-1}\left[e^{-6t}\right]$ (like any other solution). Note that, if we increase t , then e^{-6t} becomes small much faster than e^{-t} .

As a consequence, we quickly get $\left\lceil \frac{x(t)}{y(t)} \right\rceil \approx C_1 \left\lceil \frac{1}{4} \right\rceil e^{-t}$, where the right-h $\frac{1}{4}\left|e^{-t}\right\rangle$ where the right-hand side is on the green line.

(c) The only equilibrium point is (0*;* 0) and it is asymptotically stable.

We can see this from the phase portrait but we can also determine it from the DE and our solution: first, solving $y - 5x = 0$ and $4x - 2y = 0$ we only get the unique solution $x = 0$, $y = 0$, which means that only $(0,0)$ is an equilibrium point. On the other hand, the general solution shows that every solution approaches $(0,0)$ as $t \rightarrow \infty$ because both e^{-t} and e^{-6t} approach 0.

In general. This is typical: if both eigenvalues are negative, then the equilibrium is asymptotically stable. If at least one eigenvalue is positive, then the equilibrium is unstable.

Example 82. Consider the system $\frac{dx}{dt} = 5x - y$, $\frac{dy}{dt} = 2y - 4x$.

- (a) Determine the general solution.
- (b) Make a phase portrait.
- (c) Determine all equilibrium points and their stability.

Solution.

(a) Note that we can write this is in matrix form as $\left[\begin{array}{c} x \\ y \end{array}\right]' = M \left[\begin{array}{c} x \\ y \end{array}\right]$ with $M = -1$ $\left[\begin{matrix} x\ y \end{matrix}\right]' = M\left[\begin{matrix} x\ y \end{matrix}\right]$ with $M=-\left[\begin{matrix} -5 & 1\ 4 & -2 \end{matrix}\right]$, where th $\left[\begin{array}{c} x \ y \end{array}\right]$ with $M\!=\!-\!\left[\begin{array}{cc} -5 & 1 \ 4 & -2 \end{array}\right]$, where the matrix $4 -2$ \prime mere the ma $\Big]$, where the matrix is exactly -1 times what it was in Example 81 Consequently, M has 1-eigenvector $\left\lceil \frac{1}{4}\right\rceil$ as well as 6 -eigenvector $\left\lceil \frac{-1}{1}\right\rceil$. (Can you ex $\big].$ (Can you explain why the

eigenvectors are the same and the eigenvalues changed sign?) Thus, the general solution is $\begin{bmatrix} x(t) \\ y(t) \end{bmatrix} = C_1 \begin{bmatrix} 1 \\ 4 \end{bmatrix} e^{t} + C_2 \begin{bmatrix} -1 \\ 1 \end{bmatrix} e^{6t}.$ $\frac{1}{4}$ $\left| e^{t} + C_2 \right| \left| \frac{-1}{1} \right| e^{6t}$.

(b) We again have Sage make the plot for us:

```
\gg x, y = var('x y')
```

```
streamline_plot((5*x-y,-4*x+2*y), (x,-4,4), (y,-4,4))
```


Note that the phase portrait is identical to the one in Example [81](#page-0-0), except that the arrows are reversed.

 (c) The only equilibrium point is $(0,0)$ and it is unstable.

We can see this from the phase portrait but we can also see it readily from our general solution $\left\lceil \frac{x(t)}{y(t)}\right\rceil = \left\lceil \frac{1}{t} \right\rceil$ $C_1\begin{bmatrix} 1 \\ 4 \end{bmatrix}e^{t} + C_2\begin{bmatrix} -1 \\ 1 \end{bmatrix}e^{t}$ $\frac{1}{4}\left[e^t+C_2\right]_1^{-1}\left[e^{6t}\right]$ because e^t and e^{6t} go to ∞ as $t\rightarrow\infty.$

In general. If at least one eigenvalue is positive, then the equilibrium is unstable.

Example 83. Suppose the system $\frac{dx}{dt} = f(x, y)$, $\frac{dy}{dt} = g(x, y)$ has general solution $\begin{bmatrix} x(t) \\ y(t) \end{bmatrix} =$ $C_1\begin{bmatrix} 1 \\ 4 \end{bmatrix}e^{-t} + C_2\begin{bmatrix} -1 \\ 1 \end{bmatrix}$ $\frac{1}{4}\left[e^{-t}+C_2\right]\frac{-1}{1}\left[e^{6t}\right]$. Determine all equilibrium points and their stability.

 ${\sf Solution.}$ Clearly, the only constant solution is the zero solution $\left\lceil\frac{x(t)}{y(t)}\right\rceil=\left\lceil\frac{0}{0}\right\rceil$. Equivalently, the only eq 0 | $-$ quivalently, $\big].$ Equivalently, the only equilibrium point is (0*;* 0).

Since $e^{6t}\to\infty$ as $t\to\infty$, we conclude that the equilibrium is unstable. (Note that the solution $C_2\Big\lceil\frac{-1}{1}\Big\rceil e^{6t}$ starts arbitrarily near to $(0,0)$ but always "flows away").

Example 84. (spiral source, spiral sink, center point)

- (a) Analyze the system $\frac{d}{dt}\begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ -4 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$. -4 1 $\parallel y$ \parallel $\left[\begin{array}{c} x \end{array}\right]$ *y* \mathbf{I} and \mathbf{I} and \mathbf{I} .
- (b) Analyze the system $\frac{d}{dt}\begin{bmatrix} x \\ y \end{bmatrix} = -\begin{bmatrix} 1 & 1 \\ -4 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$. -4 1 $\parallel y$ \parallel $\left[\begin{array}{c} x \end{array}\right]$ *y* \mathbf{I} and \mathbf{I} and \mathbf{I} .
- (c) Analyze the system $\frac{\mathrm{d}}{\mathrm{d}t} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ -4 & 0 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$. -4 0 $\parallel y \parallel$ $\left[\begin{array}{c} x \end{array}\right]$ *y* \mathbf{I} and \mathbf{I} and \mathbf{I} .

Solution.

(a) The eigenvalues are $\lambda = 1 \pm 2i$ and the general solution, in real form, is:

$$
\begin{bmatrix} x(t) \\ y(t) \end{bmatrix} = C_1 \begin{bmatrix} \cos(2t) \\ -2\sin(2t) \end{bmatrix} e^t + C_2 \begin{bmatrix} \sin(2t) \\ 2\cos(2t) \end{bmatrix} e^t
$$

In this case, the origin is a spiral source which is an unstable equilibrium (note that it follows from $e^t\!\rightarrow\!\infty$ as $t\!\rightarrow\!\infty$ that all solutions "flow away" from the origin because they have increasing amplitude).

 ${\sf Review.} \left[{{\rm~cos}(t) \atop {\rm sin}(t)} \right]$ parametrizes the unit circle. $\textsf{Similarly,} \left[\begin{array}{c} \cos(t) \ 2\sin(t) \end{array} \right]$ parametrizes an ellipse.

(b) The eigenvalues are $\lambda = -1 \pm 2i$ and the general solution, in real form, is:

 $\begin{bmatrix} x(t) \\ y(t) \end{bmatrix} = C_1 \begin{bmatrix} \cos(2t) \\ -2\sin(2t) \end{bmatrix} e^{-t} + C_2 \begin{bmatrix} \sin(2t) \\ 2\cos(2t) \end{bmatrix} e^{-t}$

In this case, the origin is a spiral sink which is an asymptotically stable equilibrium (note that it follows from $e^{-t} \to 0$ as $t \to \infty$ that all solutions "flow into" the origin because their amplitude goes to zero).

Comment. Note that $\begin{bmatrix} x(t) \\ y(t) \end{bmatrix}$ solves the first system if and only $\begin{bmatrix} -4 \\ 1 \end{bmatrix}$ if $\begin{bmatrix} x(-t) \\ y(-t) \end{bmatrix}$ is a solution to the second. Consequently, the phase $\begin{bmatrix} x(-t) \\ -4 \end{bmatrix}$ portraits look alike but all arrows are reversed.

(c) The eigenvalues are $\lambda = \pm 2i$ and the general solution, in real form, is:

 $\begin{bmatrix} x(t) \\ y(t) \end{bmatrix} = C_1 \begin{bmatrix} \cos(2t) \\ -2\sin(2t) \end{bmatrix} + C_2 \begin{bmatrix} \sin(2t) \\ 2\cos(2t) \end{bmatrix}$

In this case, the origin is a center point which is a stable equilibrium (note that the solutions are periodic with period π and therefore loop around the origin; with each trajectory a perfect ellipse).