Sketch of Lecture 10

(systems of REs) The unique solution to $a_{n+1} = Ma_n$, $a_0 = c$ is $a_n = M^n c$.

- Here, M^n is the fundamental matrix solution to $a_{n+1} = Ma_n$, $a_0 = I$ (with I the identity matrix).
- If Φ_n is any fundamental matrix solution to $a_{n+1} = Ma_n$, then $M^n = \Phi_n \Phi_0^{-1}$.
- To construct a fundamental matrix solution Φ_n, we compute eigenvectors: Given a λ-eigenvector v, we have the corresponding solution a_n = vλⁿ.
 If there are enough eigenvectors, we can collect these as columns to obtain Φ_n.

Why? Since Φ_n is a fundamental matrix solution, $\Phi_{n+1} = M\Phi_n$ and so $\Phi_n = M^n \Phi_0$. Hence, $M^n = \Phi_n \Phi_0^{-1}$.

Example 61. (review) Write the (second-order) RE $a_{n+2} = a_{n+1} + 2a_n$, with $a_0 = 0$, $a_1 = 1$, as a system of (first-order) recurrences.

Solution. If $a_n = \begin{bmatrix} a_n \\ a_{n+1} \end{bmatrix}$, then $a_{n+1} = \begin{bmatrix} a_{n+1} \\ a_{n+2} \end{bmatrix} = \begin{bmatrix} a_{n+1} \\ a_{n+1} + 2a_n \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 2 & 1 \end{bmatrix} a_n$ with $a_0 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$.

Example 62. Let $M = \begin{bmatrix} 0 & 1 \\ 2 & 1 \end{bmatrix}$.

- (a) Determine the general solution to $a_{n+1} = Ma_n$.
- (b) Determine a fundamental matrix solution to $a_{n+1} = Ma_n$.
- (c) Compute M^n .
- (d) Solve $\boldsymbol{a}_{n+1} = M\boldsymbol{a}_n$, $\boldsymbol{a}_0 = \begin{bmatrix} 0\\1 \end{bmatrix}$.

Solution.

(a) Recall that each λ -eigenvector v of M provides us with a solution: namely, $a_n = v\lambda^n$. The characteristic polynomial is: $\det(A - \lambda I) = \det\left(\begin{bmatrix} -\lambda & 1\\ 2 & 1-\lambda \end{bmatrix}\right) = \lambda^2 - \lambda - 2 = (\lambda - 2)(\lambda + 1)$. Hence, the eigenvalues are $\lambda = 2$ and $\lambda = -1$.

- $\lambda = 2$: Solving $\begin{bmatrix} -2 & 1 \\ 2 & -1 \end{bmatrix} v = 0$, we find that $v = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$ is an eigenvector for $\lambda = 2$.
- $\lambda = -1$: Solving $\begin{bmatrix} 1 & 1 \\ 2 & 2 \end{bmatrix} v = 0$, we find that $v = \begin{bmatrix} -1 \\ 1 \end{bmatrix}$ is an eigenvector for $\lambda = -1$.

Hence, the general solution is $C_1 \begin{bmatrix} 1 \\ 2 \end{bmatrix} 2^n + C_2 \begin{bmatrix} -1 \\ 1 \end{bmatrix} (-1)^n$.

(b) Note that $C_1 \begin{bmatrix} 1\\2 \end{bmatrix} 2^n + C_2 \begin{bmatrix} -1\\1 \end{bmatrix} (-1)^n = \begin{bmatrix} 2^n & -(-1)^n\\2 \cdot 2^n & (-1)^n \end{bmatrix} \begin{bmatrix} C_1\\C_2 \end{bmatrix}$. Hence, a fundamental matrix solution is $\Phi_n = \begin{bmatrix} 2^n & -(-1)^n\\2 \cdot 2^n & (-1)^n \end{bmatrix}$.

Comment. Other choices are possible and natural. For instance, the order of the two columns is based on our choice of starting with $\lambda = 2$. Also, the columns can be scaled by any constant (for instance, using -v instead of v for $\lambda = -1$ above, we end up with the same Φ_n but with the second column scaled by -1). In general, if Φ_n is a fundamental matrix solution, then so is $\Phi_n C$ where C is an invertible 2×2 matrix.

(c) We compute
$$M^n = \Phi_n \Phi_0^{-1}$$
 using $\Phi_n = \begin{bmatrix} 2^n & -(-1)^n \\ 2 \cdot 2^n & (-1)^n \end{bmatrix}$. Since $\Phi_0^{-1} = \begin{bmatrix} 1 & -1 \\ 2 & 1 \end{bmatrix}^{-1} = \frac{1}{3} \begin{bmatrix} 1 & 1 \\ -2 & 1 \end{bmatrix}$, we have

$$M^{n} = \Phi_{n} \Phi_{0}^{-1} = \begin{bmatrix} 2^{n} & -(-1)^{n} \\ 2 \cdot 2^{n} & (-1)^{n} \end{bmatrix} \frac{1}{3} \begin{bmatrix} 1 & 1 \\ -2 & 1 \end{bmatrix} = \frac{1}{3} \begin{bmatrix} 2^{n} + 2(-1)^{n} & 2^{n} - (-1)^{n} \\ 2 \cdot 2^{n} - 2(-1)^{n} & 2 \cdot 2^{n} + (-1)^{n} \end{bmatrix}.$$

(d) $\boldsymbol{a}_{n} = M^{n} \boldsymbol{a}_{0} = \frac{1}{3} \begin{bmatrix} 2^{n} + 2(-1)^{n} & 2^{n} - (-1)^{n} \\ 2 \cdot 2^{n} - 2(-1)^{n} & 2 \cdot 2^{n} + (-1)^{n} \end{bmatrix} \begin{bmatrix} 0 \\ 1 \end{bmatrix} = \frac{1}{3} \begin{bmatrix} 2^{n} - (-1)^{n} \\ 2 \cdot 2^{n} + (-1)^{n} \end{bmatrix}$

Armin Straub straub@southalabama.edu Alternative solution of the first part. We saw in Example 61 that this system can be obtained from $a_{n+2} = a_{n+1} + 2a_n$ if we set $a = \begin{bmatrix} a_n \\ a_{n+1} \end{bmatrix}$. In Example 53, we found that this RE has solutions $a_n = 2^n$ and $a_n = (-1)^n$. Correspondingly, $a_{n+1} = \begin{bmatrix} 0 & 1 \\ 2 & 1 \end{bmatrix} a_n$ has solutions $a_n = \begin{bmatrix} 2^n \\ 2^{n+1} \end{bmatrix}$ and $a_n = \begin{bmatrix} (-1)^n \\ (-1)^{n+1} \end{bmatrix}$. These combine to the general solution $C_1 \begin{bmatrix} 2^n \\ 2^{n+1} \end{bmatrix} + C_2 \begin{bmatrix} (-1)^n \\ (-1)^{n+1} \end{bmatrix}$ (equivalent to our solution above). Alternative for last part. Solve the RE from Example 61 to find $a_n = \frac{1}{3}(2^n - (-1)^n)$. The above is $a_n = \begin{bmatrix} a_n \\ a_{n+1} \end{bmatrix}$. Sage. Once we are comfortable with these computations, we can let Sage do them for us.

```
>>> M = matrix([[0,1],[2,1]])
```

>>> M^2

```
\left(\begin{array}{cc} 2 & 1 \\ 2 & 3 \end{array}\right)
```

Verify that this matrix matches what our formula for M^n produces for n=2. In order to reproduce the general formula for M^n , we need to first define n as a symbolic variable:

```
>>> n = var('n')
```

```
>>> M^n
```

 $\left(\begin{array}{c} \frac{1}{3} \cdot 2^n + \frac{2}{3} \ (-1)^n \ \frac{1}{3} \cdot 2^n - \frac{1}{3} \ (-1)^n \\ \frac{2}{3} \cdot 2^n - \frac{2}{3} \ (-1)^n \ \frac{2}{3} \cdot 2^n + \frac{1}{3} \ (-1)^n \end{array}\right)$

Note that this indeed matches our earlier formula. Can you see how we can read off the eigenvalues and eigenvectors of M from this formula for M^n ? Of course, Sage can readily compute these for us directly using, for instance, M.eigenvectors_right(). Try it! Can you interpret the output?