Sketch of Lecture 10 Fri, 9/13/2024

(systems of REs) The unique solution to $a_{n+1} = Ma_n$, $a_0 = c$ is $a_n = M^n c$.

- Here, M^n is the fundamental matrix solution to $a_{n+1} = Ma_n$, $a_0 = I$ (with *I* the identity matrix).
- If Φ_n is any fundamental matrix solution to $a_{n+1} = Ma_n$, then $M^n = \Phi_n \Phi_0^{-1}$. .
- To construct a fundamental matrix solution Φ_n , we compute eigenvectors: Given a λ -eigenvector \boldsymbol{v} , we have the corresponding solution $\boldsymbol{a}_n \!=\! \boldsymbol{v} \lambda^n.$ If there are enough eigenvectors, we can collect these as columns to obtain Φ_n .

Why? Since Φ_n is a fundamental matrix solution, $\Phi_{n+1} = M\Phi_n$ and so $\Phi_n = M^n\Phi_0$. Hence, $M^n = \Phi_n \Phi_0^{-1}$. .

Example 61. (review) Write the (second-order) RE $a_{n+2} = a_{n+1} + 2a_n$, with $a_0 = 0$, $a_1 = 1$, as a system of (first-order) recurrences.

Solution. If $a_n=\left[\begin{array}{c}a_n\ a_{n+1}\end{array}\right]$, then $a_{n+1}=\left[\begin{array}{c}a_{n+1}\ a_{n+2}\end{array}\right]=\left[\begin{array}{c}a_{n+1}\ a_{n+1}+2a_n\end{array}\right]=\left[\begin{array}{cc}0\ 1\ 2\ 1\end{array}\right]$ a_n with $a_0=\left[\begin{array}{c}0\ 1\end{array}\right]$. .

Example 62. Let $M = \begin{bmatrix} 0 & 1 \\ 2 & 1 \end{bmatrix}$. .

- (a) Determine the general solution to $a_{n+1} = Ma_n$.
- (b) Determine a fundamental matrix solution to $a_{n+1} = Ma_n$.
- (c) Compute *Mⁿ*.
- (d) Solve $\boldsymbol{a}_{n+1}\!=\!M\boldsymbol{a}_n,\,\boldsymbol{a}_0\!=\!\left[\begin{array}{c} 0 \ 1 \end{array}\right]\!.$.

Solution.

(a) Recall that each λ -eigenvector \bm{v} of M provides us with a solution: namely, $\bm{a}_n \!=\! \bm{v} \lambda^n$. The characteristic polynomial is: $\det(A - \lambda I) = \det \left(\left[\begin{array}{cc} -\lambda & 1 \\ 2 & 1-\lambda \end{array} \right] \right) = \lambda^2 - \lambda - 2 = (\lambda - 2)(\lambda + 1).$ Hence, the eigenvalues are $\lambda = 2$ and $\lambda = -1$.

- $\lambda = 2$: Solving $\begin{bmatrix} -2 & 1 \ 2 & -1 \end{bmatrix}$ $v = 0$, we find that $v = \begin{bmatrix} 1 \ 2 \end{bmatrix}$ is an eigenvector for $\lambda = 2$.
- $\lambda = -1$: Solving $\begin{bmatrix} 1 & 1 \ 2 & 2 \end{bmatrix}$ $v = 0$, we find that $v = \begin{bmatrix} -1 \ 1 \end{bmatrix}$ is an eigenvector for $\lambda = -1$.

Hence, the general solution is $C_1\begin{bmatrix} 1 \\ 2 \end{bmatrix} 2^n + C_2\begin{bmatrix} -1 \\ 1 \end{bmatrix} (-1)^n.$

(b) Note that $C_1\begin{bmatrix} 1 \\ 2 \end{bmatrix}2^n + C_2\begin{bmatrix} -1 \\ 1 \end{bmatrix}(-1)^n = \begin{bmatrix} 2^n & -(-1)^n \\ 2 \cdot 2^n & (-1)^n \end{bmatrix} \begin{bmatrix} C_1 \\ C_2 \end{bmatrix}$. . Hence, a fundamental matrix solution is $\Phi_n\!=\!\left[\begin{array}{cc}2^n&-(-1)^n\2\cdot 2^n&(-1)^n\end{array}\right]\!.$.

Comment. Other choices are possible and natural. For instance, the order of the two columns is based on our choice of starting with $\lambda = 2$. Also, the columns can be scaled by any constant (for instance, using $-v$ instead of v for $\lambda = -1$ above, we end up with the same Φ_n but with the second column scaled by -1). In general, if Φ_n is a fundamental matrix solution, then so is $\Phi_n C$ where C is an invertible 2×2 matrix.

(c) We compute
$$
M^n = \Phi_n \Phi_0^{-1}
$$
 using $\Phi_n = \begin{bmatrix} 2^n & -(-1)^n \\ 2 \cdot 2^n & (-1)^n \end{bmatrix}$. Since $\Phi_0^{-1} = \begin{bmatrix} 1 & -1 \\ 2 & 1 \end{bmatrix}^{-1} = \frac{1}{3} \begin{bmatrix} 1 & 1 \\ -2 & 1 \end{bmatrix}$, we have

$$
M^{n} = \Phi_{n} \Phi_{0}^{-1} = \begin{bmatrix} 2^{n} & -(-1)^{n} \\ 2 \cdot 2^{n} & (-1)^{n} \end{bmatrix} \frac{1}{3} \begin{bmatrix} 1 & 1 \\ -2 & 1 \end{bmatrix} = \frac{1}{3} \begin{bmatrix} 2^{n} + 2(-1)^{n} & 2^{n} - (-1)^{n} \\ 2 \cdot 2^{n} - 2(-1)^{n} & 2 \cdot 2^{n} + (-1)^{n} \end{bmatrix}.
$$
\n
$$
(d) \ a_{n} = M^{n} a_{0} = \frac{1}{3} \begin{bmatrix} 2^{n} + 2(-1)^{n} & 2^{n} - (-1)^{n} \\ 2 \cdot 2^{n} - 2(-1)^{n} & 2 \cdot 2^{n} + (-1)^{n} \end{bmatrix} \begin{bmatrix} 0 \\ 1 \end{bmatrix} = \frac{1}{3} \begin{bmatrix} 2^{n} - (-1)^{n} \\ 2 \cdot 2^{n} + (-1)^{n} \end{bmatrix}.
$$

Armin Straub straub@southalabama.edu ²³ Alternative solution of the first part. We saw in Example [61](#page-0-0) that this system can be obtained from a_{n+2} $a_{n+1}+2a_n$ if we set $\bm{a}=\left[\begin{array}{c}a_n\ a_{n+1}\end{array}\right]$. In Example [53,](#page--1-0) we found that this RE has solutions $a_n\!=\!2^n$ and $a_n\!=\!(-1)^n.$ $\textsf{Correspondingly,}\ \bm{a}_{n+1}\!=\!\left[\begin{array}{cc} 0 & 1 \ 2 & 1 \end{array}\right]\!\!\bm{a}_n$ has solutions $\bm{a}_n\!=\!\left[\begin{array}{c} 2^n \ 2^{n+1} \end{array}\right]$ and $\bm{a}_n\!=\!\left[\begin{array}{c} (-1)^n \ (-1)^{n+1} \end{array}\right]$ $\begin{bmatrix} 2^n \\ 2^{n+1} \end{bmatrix}$ and $\boldsymbol{a}_n = \begin{bmatrix} (-1)^n \\ (-1)^{n+1} \end{bmatrix}$. . These combine to the general solution $C_1\begin{bmatrix} 2^n \\ 2^{n+1} \end{bmatrix}+ C_2\begin{bmatrix} (-1)^n \\ (-1)^n \end{bmatrix}$ $\begin{bmatrix} 2^n\ 2^{n+1}\end{bmatrix}+C_2\begin{bmatrix} (-1)^n\ (-1)^{n+1}\end{bmatrix}$ (equivalent to our solution above). $\bm{\mathsf{Alternative}}$ for last part. Solve the RE from Example 61 to find $a_n\!=\!\frac{1}{3}(2^n-(-1)^n).$ The above is $\bm{\mathfrak{c}}$ $\frac{1}{3}(2^n-(-1)^n).$ The above is $\boldsymbol{a}_n\!=\!\! \left[\begin{array}{c} a_n \ a_{n+1} \end{array}\right]\!.$. Sage. Once we are comfortable with these computations, we can let Sage do them for us.

```
\gg M = matrix([0,1],[2,1])
```
>>> M^2

 $\left(\begin{array}{cc} 2 & 1 \\ 2 & 3 \end{array}\right)$

Verify that this matrix matches what our formula for M^n produces for $n = 2$. In order to reproduce the general formula for M^n , we need to first define n as a symbolic variable:

```
\gg n = var('n')
```

```
>>> M^n
```
 $(1 - m)^2$ (in $1 - m$ 1) $\begin{pmatrix} 3 & 3 \\ 2 & 2 \end{pmatrix}$ $\begin{pmatrix} 3 & 3 \\ 2 & 2 \end{pmatrix}$ $1_{\left(9n+1\right)} 2_{\left(-1\right)} 1$ $\frac{1}{3} \cdot 2^n + \frac{2}{3} (-1)^n \frac{1}{3} \cdot 2^n - \frac{1}{3} (-1)^n$ $\frac{2}{3}(-1)^n \frac{1}{3} \cdot 2^n - \frac{1}{3}(-1)^n$ $\frac{1}{3}(-1)^n$ 2_{Ω} $2_{(1)$ $2}$ $\frac{2}{3} \cdot 2^n - \frac{2}{3} (-1)^n \frac{2}{3} \cdot 2^n + \frac{1}{3} (-1)^n$ $\frac{2}{3}(-1)^n \frac{2}{3} \cdot 2^n + \frac{1}{3}(-1)^n$ $\frac{1}{3}$ $(-1)^n$
 $\frac{1}{3}$ $(-1)^n$ \mathbf{C}

Note that this indeed matches our earlier formula. Can you see how we can read off the eigenvalues and eigenvectors of *M* from this formula for *Mn*? Of course, Sage can readily compute these for us directly using, for instance, M.eigenvectors_right(). Try it! Can you interpret the output?