
Notes for Lecture 8 Mon, 9/9/2024

Example 53. (review) Consider the sequence an defined by an+2 = an+1 + 2an and a0 = 1,
a1=8.

(a) Determine the first few terms of the sequence.

(b) Find a formula for an.

(c) Determine lim
n!1

an+1
an

.

Solution.

(a) a2= 10, a3= 26

(b) The recursion can be written as p(N)an=0 where p(N)=N2¡N ¡ 2 has roots 2;¡1.
Hence, an= C1 2

n+ C2 (¡1)n and we only need to figure out the two unknowns C1, C2. We can do
that using the two initial conditions: a0=C1+C2=1, a1=2C1¡C2=8.
Solving, we find C1=3 and C2=¡2 so that, in conclusion, an=3 � 2n¡ 2(¡1)n.

(c) It follows from the formula an=3 � 2n¡ 2(¡1)n that lim
n!1

an+1
an

=2.

Comment. In fact, this already follows from an = C1 2
n + C2 (¡1)n provided that C1 =/ 0. Since

an=C2 (¡1)n (the case C1=0) is not compatible with a0=1, a1=8, we can conclude lim
n!1

an+1
an

=2

without computing the actual values of C1 and C2.

Crash course: Eigenvalues and eigenvectors

If Ax=�x (and x=/ 0), then x is an eigenvector of A with eigenvalue � (just a number).

Note that, for the equation Ax=�x to make sense, A needs to be a square matrix (i.e. n�n).

Key observation:

Ax=�x
() Ax¡�x=0
() (A¡�I)x=0
This homogeneous system has a nontrivial solution x if and only if det(A¡�I)= 0.

To find eigenvectors and eigenvalues of A:

(a) First, find the eigenvalues � by solving det(A¡�I)= 0.
det(A¡�I) is a polynomial in �, called the characteristic polynomial of A.

(b) Then, for each eigenvalue �, find corresponding eigenvectors by solving (A¡�I)x=0.
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Example 54. Determine the eigenvalues and eigenvectors of A=
�
8 ¡10
5 ¡7

�
.

Solution. The characteristic polynomial is:

det(A¡�I)=det
��

8¡� ¡10
5 ¡7¡�

��
=(8¡�)(¡7¡�)+ 50=�2¡�¡ 6= (�¡ 3)(�+2)

Hence, the eigenvalues are �=3 and �=¡2.

� To find an eigenvector for �=3, we need to solve
�
5 ¡10
5 ¡10

�
x=0.

Hence, x=
�
2
1

�
is an eigenvector for �=3.

� To find an eigenvector for �=¡2, we need to solve
�
10 ¡10
5 ¡5

�
x=0.

Hence, x=
�
1
1

�
is an eigenvector for �=¡2.

Check!
�
8 ¡10
5 ¡7

��
2
1

�
=
�
6
3

�
=3 �

�
2
1

�
and

�
8 ¡10
5 ¡7

��
1
1

�
=
�
¡2
¡2

�
=¡2 �

�
1
1

�
On the other hand, a random other vector like

�
1
2

�
is not an eigenvector:

�
8 ¡10
5 ¡7

��
1
2

�
=
�
¡12
¡9

�
=/ �

�
1
2

�
.

Example 55. (homework) Determine the eigenvalues and eigenvectors of A=
�
1 ¡6
1 ¡4

�
.

Solution. (final answer only) x=
�
2
1

�
is an eigenvector for �=¡2, and x=

�
3
1

�
is an eigenvector for �=¡1.
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