Example 53. (review) Consider the sequence a_n defined by $a_{n+2} = a_{n+1} + 2a_n$ and $a_0 = 1$, $a_1 = 8$.

- (a) Determine the first few terms of the sequence.
- (b) Find a formula for a_n .
- (c) Determine $\lim_{n \to \infty} \frac{a_{n+1}}{a_n}$.

Solution.

- (a) $a_2 = 10, a_3 = 26$
- (b) The recursion can be written as p(N)a_n = 0 where p(N) = N² N 2 has roots 2, -1. Hence, a_n = C₁ 2ⁿ + C₂ (-1)ⁿ and we only need to figure out the two unknowns C₁, C₂. We can do that using the two initial conditions: a₀ = C₁ + C₂ = 1, a₁ = 2C₁ - C₂ = 8. Solving, we find C₁ = 3 and C₂ = -2 so that, in conclusion, a_n = 3 · 2ⁿ - 2(-1)ⁿ.
- (c) It follows from the formula $a_n = 3 \cdot 2^n 2(-1)^n$ that $\lim_{n \to \infty} \frac{a_{n+1}}{a_n} = 2$.

Comment. In fact, this already follows from $a_n = C_1 \ 2^n + C_2 \ (-1)^n$ provided that $C_1 \neq 0$. Since $a_n = C_2 \ (-1)^n$ (the case $C_1 = 0$) is not compatible with $a_0 = 1$, $a_1 = 8$, we can conclude $\lim_{n \to \infty} \frac{a_{n+1}}{a_n} = 2$ without computing the actual values of C_1 and C_2 .

Crash course: Eigenvalues and eigenvectors

If $Ax = \lambda x$ (and $x \neq 0$), then x is an eigenvector of A with eigenvalue λ (just a number).

Note that, for the equation $Ax = \lambda x$ to make sense, A needs to be a square matrix (i.e. $n \times n$). Key observation:

 $A\boldsymbol{x} = \lambda \boldsymbol{x}$ $\iff A\boldsymbol{x} - \lambda \boldsymbol{x} = \boldsymbol{0}$ $\iff (A - \lambda I)\boldsymbol{x} = \boldsymbol{0}$

This homogeneous system has a nontrivial solution \boldsymbol{x} if and only if $\det(A - \lambda I) = 0$.

To find eigenvectors and eigenvalues of A:

(a) First, find the eigenvalues λ by solving $\det(A - \lambda I) = 0$.

 $det(A - \lambda I)$ is a polynomial in λ , called the characteristic polynomial of A.

(b) Then, for each eigenvalue λ , find corresponding eigenvectors by solving $(A - \lambda I)\mathbf{x} = \mathbf{0}$.

Example 54. Determine the eigenvalues and eigenvectors of $A = \begin{bmatrix} 8 & -10 \\ 5 & -7 \end{bmatrix}$.

Solution. The characteristic polynomial is:

$$\begin{split} \det(A-\lambda I) &= \det \Bigl(\Bigl[\begin{array}{cc} 8-\lambda & -10 \\ 5 & -7-\lambda \end{array} \Bigr] \Bigr) = (8-\lambda)(-7-\lambda) + 50 = \lambda^2 - \lambda - 6 = (\lambda-3)(\lambda+2) \\ \end{split}$$
 Hence, the eigenvalues are $\lambda=3$ and $\lambda=-2.$

- To find an eigenvector for $\lambda = 3$, we need to solve $\begin{bmatrix} 5 & -10 \\ 5 & -10 \end{bmatrix} \boldsymbol{x} = \boldsymbol{0}$. Hence, $\boldsymbol{x} = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$ is an eigenvector for $\lambda = 3$.
- To find an eigenvector for $\lambda = -2$, we need to solve $\begin{bmatrix} 10 & -10 \\ 5 & -5 \end{bmatrix} \boldsymbol{x} = \boldsymbol{0}$. Hence, $\boldsymbol{x} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$ is an eigenvector for $\lambda = -2$.

 $\begin{aligned} & \mathsf{Check!} \begin{bmatrix} 8 & -10 \\ 5 & -7 \end{bmatrix} \begin{bmatrix} 2 \\ 1 \end{bmatrix} = \begin{bmatrix} 6 \\ 3 \end{bmatrix} = 3 \cdot \begin{bmatrix} 2 \\ 1 \end{bmatrix} \text{ and } \begin{bmatrix} 8 & -10 \\ 5 & -7 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} -2 \\ -2 \end{bmatrix} = -2 \cdot \begin{bmatrix} 1 \\ 1 \end{bmatrix} \end{aligned} \\ & \mathsf{On the other hand, a random other vector like} \begin{bmatrix} 1 \\ 2 \end{bmatrix} \text{ is not an eigenvector: } \begin{bmatrix} 8 & -10 \\ 5 & -7 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \end{bmatrix} = \begin{bmatrix} -12 \\ -9 \end{bmatrix} \neq \lambda \begin{bmatrix} 1 \\ 2 \end{bmatrix}. \end{aligned}$

Example 55. (homework) Determine the eigenvalues and eigenvectors of $A = \begin{bmatrix} 1 & -6 \\ 1 & -4 \end{bmatrix}$. Solution. (final answer only) $\boldsymbol{x} = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$ is an eigenvector for $\lambda = -2$, and $\boldsymbol{x} = \begin{bmatrix} 3 \\ 1 \end{bmatrix}$ is an eigenvector for $\lambda = -1$.