
Sketch of Lecture 7 Fri, 9/6/2024

Review. The recurrence an+1=5an has general solution an=C � 5n.
In operator form, the recurrence is (N ¡ 5)an= 0, where p(N) =N ¡ 5 is the characteristic polynomial. The
characteristic root 5 corresponds to the solution 5n.
This is analogous to the case of DEs p(D)y=0 where a root r of p(D) corresponds to the solution erx.

Example 45. (cont'd) Let the sequence an be defined by an+2=an+1+6an and a0=1, a1=8.

(a) Determine the first few terms of the sequence.

(b) Find a formula for an.

(c) Determine lim
n!1

an+1
an

.

Solution.

(a) a2= a1+6a0= 14, a3= a2+6a1= 62, a4= 146, :::

(b) The recursion can be written as p(N)an=0 where p(N)=N2¡N ¡ 6 has roots 3;¡2.
Hence, an= C1 3

n+ C2 (¡2)n and we only need to figure out the two unknowns C1, C2. We can do
that using the two initial conditions: a0=C1+C2=1, a1=3C1¡ 2C2=8.
Solving, we find C1=2 and C2=¡1 so that, in conclusion, an=2 � 3n¡ (¡2)n.
Comment. Such a formula is sometimes called a Binet-like formula (because it is of the same kind as
the Binet formula for the Fibonacci numbers that we can derive in the same manner).

(c) It follows from our formula that lim
n!1

an+1
an

=3 (because j3j> j¡2j so that 3n dominates (¡2)n).

To see this, we need to realize that, for large n, 3n is much larger than (¡2)n so that we have an�2 �3n

when n is large. Hence, an+1
an

� 2 � 3n+1
2 � 3n =3.

Alternatively, to be very precise, we can observe that (by dividing each term by 3n)

an+1
an

=
2 � 3n+1¡ (¡2)n+1
2 � 3n¡ (¡2)n =

2 � 3+2
�
¡2

3

�n
2 � 1¡

�
¡2

3

�n ¡!as n!1 2 � 3+0
2 � 1¡ 0 =3:

Example 46. (�warmup�) Find the general solution to the recursion an+2=4an+1¡ 4an.
Solution. The recursion can be written as p(N)an=0 where p(N)=N2¡ 4N +4 has roots 2; 2.
So a solution is 2n and, from our discussion of DEs, it is probably not surprising that a second solution is n �2n.
Hence, the general solution is an=C1 � 2n+C2 �n � 2n=(C1+C2n) � 2n.
Comment. This is analogous to (D¡ 2)2y 0=0 having the general solution y(x)= (C1+C2x)e

2x.
Check! Let's check that an=n � 2n indeed satisfies the recursion (N ¡ 2)2an=0.

(N ¡ 2)n � 2n=(n+1)2n+1¡ 2n � 2n=2n+1, so that (N ¡ 2)2n � 2n=(N ¡ 2)2n+1=0.
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Combined, we obtain the following analog of Theorem 20 for recurrence equations (RE):

Comment. Sequences that are solutions to such recurrences are called constant recursive or C-finite.

Theorem 47. Consider the homogeneous linear RE with constant coefficients p(N)an=0.

� If r is a root of the characteristic polynomial and if k is its multiplicity, then k (inde-
pendent) solutions of the RE are given by njrn for j=0; 1; :::; k¡ 1.

� Combining these solutions for all roots, gives the general solution.

Moreover. If r is the sole largest root by absolute value among the roots contributing to an, then an�Crn
(if r is not repeated�what if it is?) for large n. In particular, it follows that

lim
n!1

an+1
an

= r:

Advanced comment. Things can get weird if there are several roots of the same absolute value. Consider, for
instance, the case an=2n+(¡2)n. Can you see that, in this case, the limit limn!1

an+1
an

doesn't even exist?

Example 48. Find the general solution to the recursion an+3=2an+2+ an+1¡ 2an.
Solution. The recursion can be written as p(N)an= 0 where p(N) =N3¡ 2N2¡N + 2 has roots 2; 1;¡1.
(Here, we may use some help from a computer algebra system to find the roots.)
Hence, the general solution is an=C1 � 2n+C2+C3 � (¡1)n.

Example 49. Find the general solution to the recursion an+3=3an+2¡ 4an.
Solution. The recursion can be written as p(N)an=0 where p(N)=N3¡3N2+4 has roots 2;2;¡1. (Again,
we may use some help from a computer algebra system to find the roots.)
Hence, the general solution is an=(C1+C2n) � 2n+C3 � (¡1)n.

Theorem 50. (Binet's formula) Fn=
1

5
p

h�
1+ 5

p

2

�n
¡
�
1¡ 5

p

2

�ni
Proof. The recursion Fn+1=Fn+Fn¡1 can be written as p(N)an=0 where p(N)=N2¡N ¡ 1 has roots

�1=
1+ 5

p

2
� 1.618; �2=

1¡ 5
p

2
�¡0.618:

Hence, Fn=C1 ��1n+C2 ��2n and we only need to figure out the two unknowns C1, C2. We can do that using

the two initial conditions: F0=C1+C2=
!
0, F1=C1 �

1+ 5
p

2
+C2 �

1¡ 5
p

2
=
!
1.

Solving, we find C1=
1

5
p and C2=¡ 1

5
p so that, in conclusion, Fn=

1

5
p (�1

n¡�2n), as claimed. �

Comment. For large n, Fn�
1

5
p �1

n (because �2
n becomes very small). In fact, Fn= round

�
1

5
p
�
1+ 5

p

2

�n�
.

Back to the quotient of Fibonacci numbers. In particular, because �1
n dominates �2

n, it is now transparent
that the ratios Fn+1

Fn
approach �1=

1+ 5
p

2
� 1.618. To be precise, note that

Fn+1
Fn

=

1

5
p (�1

n+1¡�2
n+1)

1

5
p (�1

n¡�2n)
=
�1
n+1¡�2

n+1

�1
n¡�2n

=
�1¡�2

�
�2
�1

�n
1¡
�
�2
�1

�n ¡!n!1 �1¡ 0
1¡ 0 =�1:

In fact, it follows from �2 < 0 that the ratios Fn+1
Fn

approach �1 in the alternating fashion that we observed
numerically earlier. Can you see that?
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Example 51. Consider the sequence an defined by an+2 = 4an+1 + 9an and a0 = 1, a1 = 2.
Determine lim

n!1

an+1
an

.

Solution. The recursion can be written as p(N)an=0 where p(N)=N2¡4N ¡9 has roots 4� 52
p

2
�5.6056;

¡1.6056. Both roots have to be involved in the solution in order to get integer values.
We conclude that lim

n!1

an+1
an

=2+ 13
p

� 5.6056 (because j5.6056j> j¡1.6056j).

Example 52. (extra) Consider the sequence an defined by an+2 = 2an+1 + 4an and a0 = 0,
a1=1. Determine lim

n!1

an+1
an

.

First few terms of sequence. 0; 1; 2; 8; 24; 80; 256; 832; :::
These are actually related to Fibonacci numbers. Indeed, an= 2n¡1Fn. Can you prove this directly from the
recursions? Alternatively, this follows from comparing the Binet-like formulas.

Solution. Proceeding as in the previous example, we find lim
n!1

an+1
an

=1+ 5
p
� 3.23607.

Comment. With just a little more work, we find the Binet-like formula an=
(1+ 5

p
)n¡ (1¡ 5

p
)n

2 5
p .
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