Midterm #2

Please print your name:

No notes, calculators or tools of any kind are permitted. There are 31 points in total. You need to show work to receive full credit. Good luck! **Problem 1.** (7 points) Determine the equilibrium points of the system $\frac{dx}{dt} = (x-2)y$, $\frac{dy}{dt} = xy - 1$ and classify their **Problem 2.** (3 points) A mass-spring system is described by the equation $my'' + 2y = \sum_{n=1}^{\infty} \frac{1}{2n^2} \cos\left(\frac{nt}{3}\right)$. For which values of m does resonance occur?

Problem 3. (3 points) Let $y(x)$ be the unique solution to the IVP $y'' = 1 + 2(x - 1)y^2$, $y(0) = 1$, $y'(0) = 2$. Determine the first several terms (up to x^3) in the power series of $y(x)$.
Problem 4. (3 points) Find a minimum value for the radius of convergence of a power series solution to
$(x-3)y'' = \frac{2y+1}{x^2+1}$ at $x=1$.
Problem 5. (6 points) Derive a recursive description of a power series solution $y(x)$ (around $x=0$) to the differential
equation $y'' = x^2y' + 3y$.

Problem 6. (5 points)

- (a) Suppose $y(x) = \sum_{n=0}^{\infty} a_n(x+2)^n$. How can we compute the a_n from y(x)? $a_n =$
- (b) Suppose $f(t) = \frac{a_0}{2} + \sum_{n=1}^{\infty} (a_n \cos(3n\pi t) + b_n \sin(3n\pi t))$. How can we compute the a_n and b_n from f(t)?

- (c) Determine the power series around x = 0: $\frac{3}{1+7x} =$
- (d) Determine the power series around x = 0: $e^{-3x} =$

Problem 7. (4 points) Consider the function f(t) = 1 - t, defined for $t \in [0, 1]$.

- (a) Sketch the Fourier series of f(t) for $t \in [-3, 3]$.
- (b) Sketch the Fourier cosine series of f(t) for $t \in [-3,3]$.
- (c) Sketch the Fourier sine series of f(t) for $t \in [-3, 3]$.

In each sketch, carefully mark the values of the Fourier series at discontinuities.

(extra scratch paper)