
Notes for Lecture 38 Wed, 12/6/2023

Hyperbolic sine and cosine

Review. Euler's formula states that eit= cos(t)+ i sin(t).

Recall that a function f(t) is even if f(¡t)= f(t). Likewise, it is odd if f(¡t)=¡t.
Note that f(t) = tn is even if and only if n is even. Likewise, f(t) = tn is odd if and only if n is odd. That's
where the names are coming from.

Any function f(t) can be decomposed into an even and an odd part as follows:

f(t)= feven(t)+ fodd(t); feven(t)=
1
2
(f(t)+ f(¡t)); fodd(t)=

1
2
(f(t)¡ f(¡t)):

Verify that feven(t) indeed is even, and that fodd(t) indeed is an odd function (regardless of f(t)).

Example 176. The hyperbolic cosine, denoted cosh(t), is the even part of et. Likewise, the
hyperbolic sine, denoted sinh(t), is the odd part of et.

� Equivalently, cosh(t)= 1

2
(et+ e¡t) and sinh(t)= 1

2
(et¡ e¡t).

� In particular, et= cosh(t)+ sinh(t).
As recalled above, any function is the sum of its even and odd part.
Comparing with Euler's formula, we find cosh(it)= cos(t) and sinh(it)= i sin(t). This indicates that
cosh and sinh are related to cos and sin, as their name suggests (see below for the �hyperbolic� part).

� d

dt
cosh(t)= sinh(t) and d

dt
sinh(t)= cosh(t).

� cosh(t) and sinh(t) both satisfy the DE y 00= y.
We can write the general solution as C1et+C2e

¡t or, if useful, as C1 cosh(t)+C2 sinh(t).

� cosh(t)2¡ sinh(t)2=1
Verify this by substituting cosh(t)= 1

2
(et+ e¡t) and sinh(t)= 1

2
(et¡ e¡t).

Note that the equation x2¡ y2=1 describes a hyperbola (just like x2+ y2=1 describes a circle).

The above equation is saying that
�
x
y

�
=
�
cosh(t)
sinh(t)

�
is a parametrization of the hyperbola.

Comment. Circles and hyperbolas are conic sections (as are ellipses and parabolas).
Comment. Hyperbolic geometry plays an important role, for instance, in special relativity:
https://en.wikipedia.org/wiki/Hyperbolic_geometry

Homework. Write down the parallel properties of cosine and sine.

-2.0 -1.5 -1.0 -0.5 0.5 1.0 1.5 2.0

-3.0

-2.0

-1.0

1.0

2.0

3.0

4.0

cosh(x)
sinh(x)

Armin Straub
straub@southalabama.edu

88

https://en.wikipedia.org/wiki/Hyperbolic_geometry
https://en.wikipedia.org/wiki/Hyperbolic_geometry
https://en.wikipedia.org/wiki/Hyperbolic_geometry
https://en.wikipedia.org/wiki/Hyperbolic_geometry
https://en.wikipedia.org/wiki/Hyperbolic_geometry
https://en.wikipedia.org/wiki/Hyperbolic_geometry
https://en.wikipedia.org/wiki/Hyperbolic_geometry
https://en.wikipedia.org/wiki/Hyperbolic_geometry


The fin equation from thermodynamics

The following is an example from thermodynamics. The governing differential equation is a second-
order DE that is like the equation describing the motion of a mass on a spring (my 00+ ky = 0)
except that one term has the opposite sign. Besides showcasing an application, we want to show
off how cosh and sinh are useful for writing certain solutions in a more pleasing form.

Let T (x) describe the temperature at position x in a fin with fin base at x=0 and fin tip at x=L.
For more context on fins: https://en.wikipedia.org/wiki/Fin_(extended_surface)

If we write �(x)=T (x)¡T1 for the temperature excess at position x (with T1 the external tem-
perature), then we find (under various simplifying assumptions) that the temperature distribution
in our fin satisfies the following DE, known as the fin equation:

d2�
dx2

¡m2�=0; m2= hP
kA

> 0:

� A is the cross-sectional area of the fin (assumed to be the same for all positions x).

� P is the perimeter of the fin (assumed to be the same for all positions x).

� k is the thermal conductivity of the material (assumed to be constant).

� h is the convection heat transfer coefficient (assumed to be constant).

Since the DE is homogeneous and linear with characteristic roots �m, the general solution is

�(x)=C1emx+C2e¡mx=D1cosh(mx)+D2sinh(mx):

The constants C1; C2 (or, equivalently, D1; D2) can then be found by emposing appropriate
boundary conditions at the fin base (x=0) and at the fin tip (x=L).

In practice, we often know the temperature at the fin base and therefore the temperature excess,
resulting in the boundary condition �(0)= �0. At the fin tip, common boundary conditions are:

� �(L)! 0 as L!1 (infinitely long fin)

In this case, the fin is so long that the temperature at the fin tip approaches the external temperature.
Mathematically, we get �(x)=Ce¡mx since emx!1 as x!1. It follows from �(0)=�0 that C=�0.

Thus, the temperature excess is �(x)= �0 e
¡mx.

� � 0(L)= 0 (neglible heat loss at the fin tip, �adiabatic fin tip�)

This can be a more reasonable assumption than the infinitely long fin. Note that the total heat transfer
from the fin is proportional to its surface area. If the surface area at the fin tip is a negligible fraction
of the total surface area, then it is reasonable to assume that �0(L)= 0.

In this case, the temperature excess is �(x)= �0
cosh(m(L¡x))

cosh(mL)
.

Check! Instead of computing this from scratch (do that as well, later!), check that this indeed solves
the DE as well as the boundary conditions �(0)=�0 and �0(L)=0. This should be a rather quick check!

� �(L)= �L (specified temperature at fin tip)

In this case, the temperature excess is �(x)= �L sinh(mx)+ �0 sinh(m(L¡x))
sinh(mL)

.

Check! Again, check that this indeed solves the DE as well as the boundary conditions �(0)= �0 and
�(L)= �L. Once more, this should be a quick and pleasant check.
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