Finite difference method: A glance at discretizing PDEs

We know from Calculus that $f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}$.
PDEs quickly become impossibly difficult to approach with exact solution techniques.
It is common therefore to proceed numerically. One approach is to discretize the problem.
For instance. We could use $f^{\prime}(x) \approx \frac{1}{h}[f(x+h)-f(x)]$ to replace $f^{\prime}(x)$ with the finite difference on the RHS.
Such approximate methods are called finite difference methods.
Finite difference methods are a common approach to numerically solving PDEs.
The ODE or PDE translates into a (sparse) system of linear equations which is then solved using Linear Algebra.

Example 165.

- $f^{\prime}(x) \approx \frac{1}{h}[f(x+h)-f(x)]$ is a forward difference for $f^{\prime}(x)$.
- $f^{\prime}(x) \approx \frac{1}{h}[f(x)-f(x-h)]$ is a backward difference for $f^{\prime}(x)$.
- $f^{\prime}(x) \approx \frac{1}{2 h}[f(x+h)-f(x-h)]$ is a central difference for $f^{\prime}(x)$.

Note that this is the average of the forward and the backward difference. The calculations below show that the central difference performs better as an approximation of $f^{\prime}(x)$.

Comment. Recall that power series $f(x)$ have the Taylor expansion $f(x)=\sum_{n=0}^{\infty} \frac{f^{(n)}\left(x_{0}\right)}{n!}\left(x-x_{0}\right)^{n}$.
Equivalently, $f(x+h)=\sum_{n=0}^{\infty} \frac{f^{(n)}(x)}{n!} h^{n}=f(x)+h f^{\prime}(x)+\frac{h^{2}}{2} f^{\prime \prime}(x)+\frac{h^{3}}{6} f^{\prime \prime \prime}(x)+O\left(h^{4}\right)$. It follows that

$$
\frac{1}{h}[f(x+h)-f(x)]=f^{\prime}(x)+\frac{h}{2} f^{\prime \prime}(x)+O\left(h^{2}\right)=f^{\prime}(x)+O(h) .
$$

The error is of order $O(h)$. On the other hand, combining

$$
\begin{aligned}
& f(x+h)=f(x)+h f^{\prime}(x)+\frac{h^{2}}{2} f^{\prime \prime}(x)+\frac{h^{3}}{6} f^{\prime \prime \prime}(x)+O\left(h^{4}\right), \\
& f(x-h)=f(x)-h f^{\prime}(x)+\frac{h^{2}}{2} f^{\prime \prime}(x)-\frac{h^{3}}{6} f^{\prime \prime \prime}(x)+O\left(h^{4}\right),
\end{aligned}
$$

it follows that

$$
\frac{1}{2 h}[f(x+h)-f(x-h)]=f^{\prime}(x)+\frac{h^{2}}{6} f^{\prime \prime \prime}(x)+O\left(h^{3}\right)=f^{\prime}(x)+O\left(h^{2}\right) .
$$

The error is of order $O\left(h^{2}\right)$.
Comment. An error of order h^{2} means that if we cut h by a factor of, say, $\frac{1}{10}$, then we expect the error to be cut by a factor of $\frac{1}{10^{2}}=\frac{1}{100}$.

Example 166. Find a central difference for $f^{\prime \prime}(x)$.
Solution. Adding the two expansions for $f(x+h)$ and $f(x-h)$ to kill the $f^{\prime}(x)$ terms, and subtracting $2 f(x)$, we find that

$$
\frac{1}{h^{2}}[f(x+h)-2 f(x)+f(x-h)]=f^{\prime \prime}(x)+\frac{h^{2}}{12} f^{(4)}(x)+O\left(h^{3}\right)=f^{\prime \prime}(x)+O\left(h^{2}\right) .
$$

The error is of order 2.
Alternatively. If we iterate the approximation $f^{\prime}(x) \approx \frac{1}{2 h}[f(x+h)-f(x-h)]$ (in the second step, we apply it with x replaced by $x \pm h$), we obtain

$$
f^{\prime \prime}(x) \approx \frac{1}{2 h}\left[f^{\prime}(x+h)-f^{\prime}(x-h)\right] \approx \frac{1}{4 h^{2}}[f(x+2 h)-2 f(x)+f(x-2 h)],
$$

which is the same as what we found above, just with h replaced by $2 h$.

Example 167. (discretizing $\boldsymbol{\Delta}$) Use the above central difference approximation for second derivatives to derive a finite difference for $\Delta u=u_{x x}+u_{y y}$ in 2D.
Solution.

$$
\begin{aligned}
u_{x x}+u_{y y} & \approx \frac{1}{h^{2}}[u(x+h, y)-2 u(x, y)+u(x-h, y)]+\frac{1}{h^{2}}[u(x, y+h)-2 u(x, y)+u(x, y-h)] \\
& =\frac{1}{h^{2}}[u(x+h, y)+u(x-h, y)+u(x, y+h)+u(x, y-h)-4 u(x, y)]
\end{aligned}
$$

Notation. This finite difference is typically represented as $\frac{1}{h^{2}}\left[\begin{array}{ccc}1 & -4 & 1 \\ 1 & 1\end{array}\right]$, the five-point stencil.
Comment. Recall that solutions to $\Delta u=0$ are supposed to describe steady-state temperature distributions. We can see from our discretization that this is reasonable. Namely, $\Delta u=0$ becomes approximately equivalent to

$$
u(x, y)=\frac{1}{4}(u(x+h, y)+u(x-h, y)+u(x, y+h)+u(x, y-h)) .
$$

In other words, the temperature $u(x, y)$ at a point (x, y) should be the average of the temperatures of its four "neighbors" $u(x+h, y)$ (right), $u(x-h, y)$ (left), $u(x, y+h$) (top), $u(x, y-h)$ (bottom).
Comment. Think about how to use this finite difference to numerically solve the corresponding Dirichlet problem by discretizing (one equation per lattice point).
Advanced comment. If $\Delta u=0$ then, when discretizing, the center point has the average value of the four points adjacent to it. This leads to the maximum principle: if $\Delta u=0$ on a region R, then the maximum (and, likewise, minimum) value of u must occur at a boundary point of R.

Example 168. Discretize the following Dirichlet problem:

$$
\begin{align*}
& u_{x x}+u_{y y}=0 \quad(\mathrm{PDE}) \\
& u(x, 0)=2 \\
& u(x, 2)=3 \\
& u(0, y)=0 \tag{BC}\\
& u(1, y)=0
\end{align*} \quad(\mathrm{BC})
$$

Use a step size of $h=\frac{1}{3}$.
Comment. Note that, for the Dirichlet problem as well as for our discretization, it doesn't matter that the boundary conditions aren't well-defined at the corners.

Solution. Note that our rectangle has side lengths 1 (in x direction) and 2 (in y direction). With a step size of $h=\frac{1}{3}$ we therefore get $4 \cdot 7$ lattice points, namely the points

$$
u_{m, n}=u(m h, n h), \quad m \in\{0,1,2,3\}, n \in\{0,1, \ldots, 6\}
$$

Further note that the boundary conditions determine the values of $u_{m, n}$ if $m=0$ or $m=3$ as well as if $n=0$ or $n=6$. This leaves $2 \cdot 5=10$ points at which we need to determine the value of $u_{m, n}$.
Next, we approximate $u_{x x}+u_{y y}$ by $\frac{1}{h^{2}}[u(x+h, y)+u(x-h, y)+u(x, y+h)+u(x, y-h)-4 u(x, y)]$ (see previous example for how we obtained this finite difference approximation). Note that, if $u(x, y)=u_{m, n}$ is one of our lattice points, then the other four terms in the finite difference are lattice points as well; for instance, $u(x+h, y)=u_{m+1, n}$. The equation $u_{x x}+u_{y y}=0$ therefore translates into

$$
u_{m+1, n}+u_{m-1, n}+u_{m, n+1}+u_{m, n-1}-4 u_{m, n}=0
$$

Spelling out these equation for each $m \in\{1,2\}$ and $n \in\{1,2, \ldots, 5\}$, we get 10 (linear) equations for our 10 unknown values. For instance, here are the equations for $(m, n)=(1,1),(1,2)$ as well as $(2,5)$:

$$
\begin{gathered}
u_{2,1}+\underbrace{u_{0,1}}_{=0}+u_{1,2}+\underbrace{u_{1,0}}_{=2}-4 u_{1,1}=0 \\
u_{2,2}+\underbrace{u_{0,2}}_{=0}+u_{1,3}+u_{1,1}-4 u_{1,2}=0 \\
\vdots \\
\underbrace{u_{3,5}}_{=0}+u_{1,5}+\underbrace{u_{2,6}}_{=3}+u_{2,4}-4 u_{2,5}=0
\end{gathered}
$$

In matrix-vector form, these linear equations take the form:

$$
\left[\begin{array}{cccccccccc}
-4 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
1 & -4 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
& & & & \vdots & & & & & \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & -4
\end{array}\right]\left[\begin{array}{l}
u_{1,1} \\
u_{1,2} \\
u_{1,3} \\
u_{1,4} \\
u_{1,5} \\
u_{2,1} \\
u_{2,2} \\
u_{2,3} \\
u_{2,4} \\
u_{2,5}
\end{array}\right]=\left[\begin{array}{c}
-2 \\
0 \\
\vdots \\
-3
\end{array}\right]
$$

Solving this system, we find $u_{1,1} \approx 0.7847, u_{1,2} \approx 0.3542, \ldots, u_{2,5} \approx 1.1597$.
For comparison, the corresponding exact values are $u\left(\frac{1}{3}, \frac{1}{3}\right) \approx 0.7872, u\left(\frac{1}{3}, \frac{2}{3}\right) \approx 0.3209, \ldots, u\left(\frac{2}{3}, \frac{5}{3}\right) \approx 1.1679$. These were computed from the exact formula

$$
u(x, y)=\sum_{\substack{n=1 \\ n \text { odd }}}^{\infty} \frac{4}{\pi n} \frac{\sin (\pi n x)}{1-e^{4 \pi n}}\left[2\left(e^{\pi n y}-e^{-\pi n(y-4)}\right)+3\left(e^{\pi n(2-y)}-e^{\pi n(2+y)}\right)\right]
$$

which we will derive soon.

The three plots below visualize the discretized solution with $h=\frac{1}{3}$ from Example 168, the exact solution, as well as the discretized solution with $h=\frac{1}{20}$.

Comment. The first plot looks a bit overly rough because we chose not to interpolate the values. As we showed above, the approximate values at the ten lattice points are actually pretty decent for such a large step size.
Warning. The resulting linear systems quickly become very large. For instance, if we use a step size of $h=\frac{1}{100}$, then we need to determine roughly $100 \cdot 200=20,000\left(99 \cdot 199\right.$ to be exact) values $u_{m, n}$. The corresponding matrix M will have about $20,000^{2}=400,000,000$ entries, which is already challenging for a weak machine if we use generic linear algebra software. At this point it is important to realize that most entries of the matrix M are 0 . Such matrices are called sparse and there are efficient algorithms for solving systems involving such matrices.

Example 169. Discretize the following Dirichlet problem:

$$
\begin{align*}
& u_{x x}+u_{y y}=0 \quad(\mathrm{PDE}) \\
& u(x, 0)=2 \\
& u(x, 1)=3 \\
& u(0, y)=1 \quad(\mathrm{BC}) \tag{BC}\\
& u(2, y)=4
\end{align*}
$$

Use a step size of $h=\frac{1}{2}$.
Solution. Note that our rectangle has side lengths 2 (in x direction) and 1 (in y direction). With a step size of $h=\frac{1}{2}$ we therefore get $5 \cdot 3$ lattice points, namely the points

$$
u_{m, n}=u(m h, n h), \quad m \in\{0,1,2,3,4\}, n \in\{0,1,2\} .
$$

Further note that the boundary conditions determine the values of $u_{m, n}$ if $m=0$ or $m=4$ as well as if $n=0$ or $n=2$. This leaves $3 \cdot 1=3$ points at which we need to determine the value of $u_{m, n}$.
If we approximate $u_{x x}+u_{y y}$ by $\frac{1}{h^{2}}[u(x+h, y)+u(x-h, y)+u(x, y+h)+u(x, y-h)-4 u(x, y)]$ then, in terms of our lattice points, the equation $u_{x x}+u_{y y}=0$ translates into

$$
u_{m+1, n}+u_{m-1, n}+u_{m, n+1}+u_{m, n-1}-4 u_{m, n}=0
$$

Spelling out these equation for each $m \in\{1,2,3\}$ and $n=1$, we get 3 equations for our 3 unknown values:

$$
\begin{aligned}
& u_{2,1}+\underbrace{u_{0,1}}_{=1}+\underbrace{u_{1,2}}_{=3}+\underbrace{u_{1,0}}_{=2}-4 u_{1,1}=0 \\
& u_{3,1}+u_{1,1}+\underbrace{u_{2,2}}_{=3}+\underbrace{u_{2,0}}_{=2}-4 u_{2,1}=0 \\
& u_{=4}^{u_{4,1}}+u_{2,1}+\underbrace{u_{3,2}}_{=3}+\underbrace{u_{3,0}}_{=2}-4 u_{3,1}=0
\end{aligned}
$$

In matrix-vector form, these linear equations take the form:

$$
\left[\begin{array}{ccc}
-4 & 1 & 0 \\
1 & -4 & 1 \\
0 & 1 & -4
\end{array}\right]\left[\begin{array}{l}
u_{1,1} \\
u_{2,1} \\
u_{3,1}
\end{array}\right]=\left[\begin{array}{l}
-6 \\
-5 \\
-9
\end{array}\right]
$$

