The inhomogeneous heat equation

We next indicate that we can similarly solve the inhomogeneous heat equation (with inhomogeneous boundary conditions).
Comment. We indicated earlier that

$$
\begin{align*}
& u_{t}=k u_{x x} \tag{PDE}\\
& u(0, t)=a, \quad u(L, t)=b \tag{BC}\\
& u(x, 0)=f(x), \quad x \in(0, L) \tag{IC}
\end{align*}
$$

can be solved by realizing that $A x+B$ solves (PDE).
Indeed, let $v(x)=a+\frac{b-a}{L} x$ (so that $v(0)=a$ and $v(L)=b$). We then look for a solution of the form $u(x, t)=v(x)+w(x, t)$. Note that $u(x, t)$ solves $(\mathrm{PDE})+(\mathrm{BC})+(\mathrm{IC})$ if and only if $w(x, t)$ solves:

$$
\begin{align*}
& w_{t}=k w_{x x} \tag{PDE}\\
& w(0, t)=0, \quad w(L, t)=0 \tag{*}\\
& w(x, 0)=f(x)-v(x), \quad x \in(0, L) \tag{IC}
\end{align*}
$$

This is the (homogeneous) heat equation that we know how to solve.
$v(x)$ is called the steady-state solution (it does not depend on time!) and $w(x, t)$ the transient solution (note that $w(x, t)$ and its partial derivatives tend to zero as $t \rightarrow \infty$ because of the boundary conditions $\left(\mathrm{BC}^{*}\right)$).

$$
\begin{align*}
& u_{t}=3 u_{x x}+4 x^{2} \tag{PDE}\\
& u(0, t)=1, \quad u_{x}(3, t)=-5 \tag{IC}\\
& u(x, 0)=f(x), \quad x \in(0,3)
\end{align*}
$$

Example 163. Consider the heat flow problem: $u(0, t)=1, \quad u_{x}(3, t)=-5 \quad$ (BC)

Determine the steady-state solution and spell out equations characterizing the transient solution.
Solution. We look for a solution of the form $u(x, t)=v(x)+w(x, t)$, where $v(x)$ is the steady-state solution and where $w(x, t)$ is the transient solution which (together with its derivatives) tends to zero as $t \rightarrow \infty$.

- Plugging into (PDE), we get $w_{t}=3 v^{\prime \prime}+3 w_{x x}+4 x^{2}$. Letting $t \rightarrow \infty$, this becomes $0=3 v^{\prime \prime}+4 x^{2}$. Note that this also implies that $w_{t}=3 w_{x x}$.
- Plugging into (BC), we get $v(0)+w(0, t)=1$ and $v^{\prime}(3)+w_{x}(3, t)=-5$. Letting $t \rightarrow \infty$, these become $v(0)=1$ and $v^{\prime}(3)=-5$.
- Solving the ODE $0=3 v^{\prime \prime}+4 x^{2}$, we find

$$
v(x)=\iint-\frac{4}{3} x^{2} \mathrm{~d} x \mathrm{~d} x=\int\left(-\frac{4}{9} x^{3}+C\right) \mathrm{d} x=-\frac{1}{9} x^{4}+C x+D
$$

The boundary conditions $v(0)=1$ and $v^{\prime}(3)=-5$ imply $D=1$ and $-\frac{4}{9} \cdot 3^{3}+C=-5$ (so that $C=7$). In conclusion, the steady-state solution is $v(x)=-\frac{1}{9} x^{4}+1+7 x$.
On the other hand, the transient solution $w(x, t)$ is characterized as the unique solution to:

$$
\begin{array}{lr}
w_{t}=3 w_{x x} & \left(\mathrm{PDE}^{*}\right) \\
w(0, t)=0, \quad w_{x}(3, t)=0 & \left(\mathrm{BC}^{*}\right) \\
w(x, 0)=f(x)-v(x) & \left(\mathrm{IC}^{*}\right)
\end{array}
$$

This homogeneous heat flow problem can now be solved using separation of variables.

$$
u_{t}=2 u_{x x}+e^{-x / 2}
$$

Example 164. For $t \geqslant 0$ and $x \in[0,4]$, consider the heat flow problem: $\begin{gathered}u_{x}(0, t)=3 \\ u(4, t)=-2\end{gathered}$

$$
u(4, t)=-2
$$

$$
u(x, 0)=f(x)
$$

Determine the steady-state solution and spell out equations characterizing the transient solution.
Solution. We look for a solution of the form $u(x, t)=v(x)+w(x, t)$, where $v(x)$ is the steady-state solution and where the transient solution $w(x, t)$ tends to zero as $t \rightarrow \infty$ (as do its derivatives).

- Plugging into (PDE), we get $w_{t}=2 v^{\prime \prime}+2 w_{x x}+e^{-x / 2}$. Letting $t \rightarrow \infty$, this becomes $0=2 v^{\prime \prime}+e^{-x / 2}$.
- Plugging into (BC), we get $w_{x}(0, t)+v^{\prime}(0)=3$ and $w(4, t)+v(4)=-2$.

Letting $t \rightarrow \infty$, these become $v^{\prime}(0)=3$ and $v(4)=-2$.

- Solving the ODE $0=2 v^{\prime \prime}+e^{-x / 2}$, we find

$$
v(x)=\iint-\frac{1}{2} e^{-x / 2} \mathrm{~d} x \mathrm{~d} x=\int\left(e^{-x / 2}+C\right) \mathrm{d} x=-2 e^{-x / 2}+C x+D
$$

The boundary conditions $v^{\prime}(0)=3$ and $v(4)=-2$ imply $C=2$ and $-2 e^{-2}+8+D=-2$. In conclusion, the steady-state solution is $v(x)=-2 e^{-x / 2}+2 x-10+2 e^{-2}$.

On the other hand, the transient solution $w(x, t)$ is characterized as the unique solution to:

$$
\begin{aligned}
& w_{t}=2 w_{x x} \\
& w_{x}(0, t)=0, \quad w(4, t)=0 \\
& w(x, 0)=f(x)-v(x)
\end{aligned}
$$

Note. We know how to solve this homogeneous heat equation using separation of variables.

Steady-state temperature: The Laplace equation

(2D and 3D heat equation) In higher dimensions, the heat equation takes the form $u_{t}=$ $k\left(u_{x x}+u_{y y}\right)$ or $u_{t}=k\left(u_{x x}+u_{y y}+u_{z z}\right)$.
The heat equation is often written as $u_{t}=k \Delta u$ where $\Delta=\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}(2 \mathrm{D})$ or $\Delta=\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}+\frac{\partial^{2}}{\partial z^{2}}$ (3D) is the Laplace operator you may know from Calculus III.
Other notations. $\Delta u=\operatorname{div} \operatorname{grad} u=\nabla \cdot \nabla u=\nabla^{2} u$
If temperature is steady, then $u_{t}=0$. Hence, the steady-state temperature $u(x, y)$ must satisfy the PDE $u_{x x}+u_{y y}=0$.

(Laplace equation, 2D)

$$
u_{x x}+u_{y y}=0
$$

Comment. The Laplace equation is so important that its solutions have their own name: harmonic functions. It is also known as the "potential equation"; satisfied by electric/gravitational potential functions. (More generally, such potentials, if not in the vacuum, satisfy the Poisson equation $u_{x x}+u_{y y}=f(x, y)$, the inhomogeneous version of the Laplace equation.)
Recall from Calculus III (if you have taken that class) that the gradient of a scalar function $f(x, y)$ is the vector field $\boldsymbol{F}=\operatorname{grad} f=\nabla f=\left[\begin{array}{l}f_{x}(x, y) \\ f_{y}(x, y)\end{array}\right]$. One says that \boldsymbol{F} is a gradient field and f is a potential function for \boldsymbol{F} (for instance, \boldsymbol{F} could be a gravitational field with gravitational potential f).
The divergence of a vector field $\boldsymbol{G}=\left[\begin{array}{l}g(x, y) \\ h(x, y)\end{array}\right]$ is $\operatorname{div} \boldsymbol{G}=g_{x}+h_{y}$. One also writes $\operatorname{div} \boldsymbol{G}=\nabla \cdot \boldsymbol{G}$.
The gradient field of a scalar function f is divergence-free if and only if f satisfies the Laplace equation $\Delta f=0$.

One way to describe a unique solution to the Laplace equation within a region is by specifying the values of $u(x, y)$ along the boundary of that region.

This is particularly natural for steady-state temperatures profiles of a region R. The Laplace equation governs how temperature behaves inside the region but we need to also prescribe the temperature on the boundary.
The PDE with such a boundary condition is called a Dirichlet problem:

(Dirichlet problem)
 $u_{x x}+u_{y y}=0$ within region R
 $u(x, y)=f(x, y)$ on boundary of R

In general. A Dirichlet problem consists of a PDE, that needs to hold within a region R, and prescribed values on the boundary of that region ("Dirichlet boundary conditions").

