Example 160. Find the unique solution $u(x, t)$ to: $\begin{aligned} & u_{t}=u_{x x} \\ & u(0, t)=u(1, t)=0 \\ & \\ & u(x, 0)=1, \quad x \in(0,1)\end{aligned}$
Solution. This is the case $k=1, L=1$ and $f(x)=1, x \in(0,1)$, of Example 158.
In the final step, we extend $f(x)$ to the 2-periodic odd function of Example 137. In particular, earlier, we have already computed that the Fourier series is

$$
f(x)=\sum_{\substack{n=1 \\ n \text { odd }}}^{\infty} \frac{4}{\pi n} \sin (n \pi x)
$$

Hence, $u(x, t)=\sum_{\substack{n=1 \\ n \text { odd }}}^{\infty} \frac{4}{\pi n} e^{-\pi^{2} n^{2} t} \sin (n \pi x)$.
Comment. Note that, for $t>0$, the exponential very quickly approaches 0 (because of the $-n^{2}$ in the exponent), so that we get very accurate approximations with only a handful terms.

We can use Sage to plot our solution using the terms $n=1,3,5, \ldots, 19$ of the infinite sum:

```
>>> var('x,t');
>>> uxt = sum(4/(pi*n) * exp(-pi~2*n~2*t) * sin(pi*n*x) for n in range(1,20,2))
>>> density_plot(uxt, (x,0,1), (t,0,0.4), plot_points=200, cmap='hot')
```

The resulting plot should look similar to the following:

Can you make sense of the plot? Does that plot confirm our expectations?
[Note that the horizontal axis shows x for $x \in(0,1)$, while the vertical axis shows t for $t \in(0,0.4)$. Yellow represents 1 (for $t=0$, all values are 1 because of the initial condition), while black represents 0 .]

The boundary conditions in the next example model insulated ends.

$$
\begin{align*}
& u_{t}=k u_{x x} \tag{PDE}\\
& u_{x}(0, t)=u_{x}(L, t)=0 \tag{BC}\\
& u(x, 0)=f(x), \quad x \in(0, L) \tag{IC}
\end{align*}
$$

Solution.

- We proceed as before and look for solutions $u(x, t)=X(x) T(t)$ (separation of variables).

Plugging into (PDE), we get $X(x) T^{\prime}(t)=k X^{\prime \prime}(x) T(t)$, and so $\frac{X^{\prime \prime}(x)}{X(x)}=\frac{T^{\prime}(t)}{k T(t)}=$ const $=:-\lambda$. We thus have $X^{\prime \prime}+\lambda X=0$ and $T^{\prime}+\lambda k T=0$.

- From the (BC), i.e. $u_{x}(0, t)=X^{\prime}(0) T(t)=0$, we get $X^{\prime}(0)=0$.

Likewise, $u_{x}(L, t)=X^{\prime}(L) T(t)=0$ implies $X^{\prime}(L)=0$.

- So X solves $X^{\prime \prime}+\lambda X=0, X^{\prime}(0)=0, X^{\prime}(L)=0$. It is left as a homework to show that, up to multiples, the only nonzero solutions of this eigenvalue problem are $X(x)=\cos \left(\frac{\pi n}{L} x\right)$ corresponding to $\lambda=\left(\frac{\pi n}{L}\right)^{2}$, $n=0,1,2,3 \ldots$.
[A similar problem with full solution will be on the practice problems.]
- On the other hand (as before), T solves $T^{\prime}+\lambda k T=0$, and hence $T(t)=e^{-\lambda k t}=e^{-\left(\frac{\pi n}{L}\right)^{2} k t}$.
- Taken together, we have the solutions $u_{n}(x, t)=e^{-\left(\frac{\pi n}{L}\right)^{2} k t} \cos \left(\frac{\pi n}{L} x\right)$ solving $(\mathrm{PDE})+(\mathrm{BC})$.
- We wish to combine these in such a way that (IC) holwhereds.

At $t=0, u_{n}(x, 0)=\cos \left(\frac{\pi n}{L} x\right)$. All of these are $2 L$-periodic.
Hence, we extend $f(x)$, which is only given on $(0, L)$, to an even $2 L$-periodic function (its Fourier cosine series!). By making it even, its Fourier series only involves cosine terms: $f(x)=\frac{a_{0}}{2}+\sum_{n=0}^{\infty} a_{n} \cos \left(\frac{\pi n}{L} x\right)$. Note that

$$
a_{n}=\frac{1}{L} \int_{-L}^{L} f(x) \cos \left(\frac{n \pi x}{L}\right) \mathrm{d} x=\frac{2}{L} \int_{0}^{L} f(x) \cos \left(\frac{n \pi x}{L}\right) \mathrm{d} x,
$$

where the first integral makes reference to the extension of $f(x)$ while the second integral only uses $f(x)$ on its original interval of definition.
Consequently, (PDE) $+(\mathrm{BC})+(\mathrm{IC})$ is solved by

$$
u(x, t)=\frac{a_{0}}{2} u_{0}(x, t)+\sum_{n=1}^{\infty} a_{n} u_{n}(x, t)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty} a_{n} e^{-\left(\frac{\pi n}{L}\right)^{2} k t} \cos \left(\frac{\pi n}{L} x\right),
$$

where

$$
a_{n}=\frac{2}{L} \int_{0}^{L} f(x) \cos \left(\frac{n \pi x}{L}\right) \mathrm{d} x .
$$

$$
\begin{equation*}
u_{t}=3 u_{x x} \tag{PDE}
\end{equation*}
$$

Example 162. Find the unique solution $u(x, t)$ to: $\begin{aligned} & u_{t}=3 u_{x x} \\ & u_{x}(0, t)=u_{x}(4, t)=0\end{aligned}$

$$
\begin{equation*}
u(x, 0)=2+5 \cos (\pi x)-\cos (3 \pi x), x \in(0,4) \tag{BC}
\end{equation*}
$$

Solution. This is the case $k=3, L=4$ that we solved in Example 161 where we found that the functions

$$
u_{n}(x, t)=e^{-\left(\frac{\pi n}{L}\right)^{2} k t} \cos \left(\frac{\pi n}{L} x\right)=e^{-3\left(\frac{\pi n}{4}\right)^{2} t} \cos \left(\frac{\pi n}{4} x\right)
$$

solve $(\mathrm{PDE})+(\mathrm{BC})$. Since $u_{n}(x, 0)=\cos \left(\frac{\pi n}{4} x\right)$, we have

$$
2 u_{0}(x, 0)+5 u_{4}(x, 0)-u_{12}(x, 0)=2+5 \cos (\pi x)-\cos (3 \pi x),
$$

which is what we need for the right-hand side of (IC). Therefore, (PDE) $+(\mathrm{BC})+(\mathrm{IC})$ is solved by

$$
u(x, t)=2 u_{0}(x, t)+5 u_{4}(x, t)-u_{12}(x, t)=2+5 e^{-3 \pi^{2} t} \cos (\pi x)-e^{-27 \pi^{2} t} \cos (3 \pi x) .
$$

