Review. The heat equation: $u_{t}=k u_{x x}$
Example 156. (cont'd) To get a feeling, let us find some solutions to $u_{t}=u_{x x}$.

- $u(x, t)=a x+b$ is a solution.
- For instance, $u(x, t)=e^{t} e^{x}$ is a solution.
[Not a very interesting one for modeling heat flow because it increases exponentially in time.]
- More interesting are $u(x, t)=e^{-t} \cos (x)$ and $u(x, t)=e^{-t} \sin (x)$.
- More generally, $e^{-n^{2} t} \cos (n x)$ and $e^{-n^{2} t} \sin (n x)$ are solutions.

Important observation. This actually reveals a strategy for solving the PDE $u_{t}=u_{x x}$ with conditions such as:

$$
\begin{align*}
& u(0, t)=u(\pi, t)=0 \tag{BC}\\
& u(x, 0)=f(x), \quad x \in(0, \pi) \tag{IC}
\end{align*}
$$

Namely, the solutions $u_{n}(x, t)=e^{-n^{2} t} \sin (n x)$ all satisfy (BC).
It remains to satisfy (IC). Note that $u_{n}(x, 0)=\sin (n x)$. To find $u(x, t)$ such that $u(x, 0)=f(x)$, we can write $f(x)$ as a Fourier sine series (i.e. extend $f(x)$ to a 2π-periodic odd function):

$$
f(x)=\sum_{n \geqslant 1} b_{n} \sin (n x)
$$

Then $u(x, t)=\sum_{n \geqslant 1} b_{n} u_{n}(x, t)=\sum_{n \geqslant 1} b_{n} e^{-n^{2} t} \sin (n x)$ solves the PDE $u_{t}=u_{x x}$ with (BC) and (IC).

Example 157 Find the unique solution $u(x, t)$ to: $u_{t}=u_{x x}$
Example 157. Find the unique solution $u(x, t)$ to: $u(0, t)=u(\pi, t)=0$

$$
\begin{equation*}
u(x, 0)=\sin (2 x)-7 \sin (3 x), \quad x \in(0, \pi) \tag{PDE}
\end{equation*}
$$

Solution. As we just observed (see next example for what to do in general), the functions $u_{n}(x, t)=e^{-n^{2} t} \sin (n x)$ satisfy (PDE) and (BC) for any integer $n=1,2,3, \ldots$
Since $u_{n}(x, 0)=\sin (n x)$, we have $u_{2}(x, 0)-7 u_{3}(x, 0)=\sin (2 x)-7 \sin (3 x)$ as needed for (IC).
Therefore, $(\mathrm{PDE})+(\mathrm{BC})+(\mathrm{IC})$ is solved by

$$
u(x, t)=u_{2}(x, t)-7 u_{3}(x, t)=e^{-4 t} \sin (2 x)-7 e^{-9 t} \sin (3 x)
$$

Comment. Why did we restrict the integer n to the case $n \geqslant 1$?
[$n=0$ just gives the zero function, and negative values don't give anything new because $u_{-n}(x, t)=-u_{n}(x, t)$.]

In the next example, we show that this idea can always be used to solve the heat equation.

$$
\begin{equation*}
u_{t}=k u_{x x} \tag{PDE}
\end{equation*}
$$

$$
\begin{align*}
\text { Example 158. Find the unique solution } u(x, t) \text { to: } & u(0, t)=u(L, t)=0 \tag{BC}\\
& u(x, 0)=f(x), \quad x \in(0, L) \tag{IC}
\end{align*}
$$

Solution.

- We will first look for simple solutions of $(\mathrm{PDE})+(\mathrm{BC})$ (and then we plan to take a combination of such solutions that satisfies (IC) as well). Namely, we look for solutions $u(x, t)=X(x) T(t)$. This approach is called separation of variables and it is crucial for solving other PDEs as well.
- Plugging into (PDE), we get $X(x) T^{\prime}(t)=k X^{\prime \prime}(x) T(t)$, and so $\frac{X^{\prime \prime}(x)}{X(x)}=\frac{T^{\prime}(t)}{k T(t)}$.

Note that the two sides cannot depend on x (because the right-hand side doesn't) and they cannot depend on t (because the left-hand side doesn't). Hence, they have to be constant. Let's call this constant $-\lambda$. Then, $\frac{X^{\prime \prime}(x)}{X(x)}=\frac{T^{\prime}(t)}{k T(t)}=$ const $=:-\lambda$.
We thus have $X^{\prime \prime}+\lambda X=0$ and $T^{\prime}+\lambda k T=0$.

- Consider (BC). Note that $u(0, t)=X(0) T(t)=0$ implies $X(0)=0$.
[Because otherwise $T(t)=0$ for all t, which would mean that $u(x, t)$ is the dull zero solution.]
Likewise, $u(L, t)=X(L) T(t)=0$ implies $X(L)=0$.
- So X solves $X^{\prime \prime}+\lambda X=0, X(0)=0, X(L)=0$. We know that, up to multiples, the only nonzero solutions are the eigenfunctions $X(x)=\sin \left(\frac{\pi n}{L} x\right)$ corresponding to the eigenvalues $\lambda=\left(\frac{\pi n}{L}\right)^{2}, n=1,2,3 \ldots$.
- On the other hand, T solves $T^{\prime}+\lambda k T=0$, and hence $T(t)=e^{-\lambda k t}=e^{-\left(\frac{\pi n}{L}\right)^{2} k t}$.
- Taken together, we have the solutions $u_{n}(x, t)=e^{-\left(\frac{\pi n}{L}\right)^{2} k t} \sin \left(\frac{\pi n}{L} x\right)$ solving $(\mathrm{PDE})+(\mathrm{BC})$.
- We wish to combine these in such a way that (IC) holds as well.

At $t=0, u_{n}(x, 0)=\sin \left(\frac{\pi n}{L} x\right)$. All of these are $2 L$-periodic.
Hence, we extend $f(x)$, which is only given on $(0, L)$, to an odd $2 L$-periodic function (its Fourier sine series!). By making it odd, its Fourier series will only involve sine terms: $f(x)=\sum_{n=1}^{\infty} b_{n} \sin \left(\frac{\pi n}{L} x\right)$. Note that

$$
b_{n}=\frac{1}{L} \int_{-L}^{L} f(x) \sin \left(\frac{n \pi x}{L}\right) \mathrm{d} x=\frac{2}{L} \int_{0}^{L} f(x) \sin \left(\frac{n \pi x}{L}\right) \mathrm{d} x
$$

where the first integral makes reference to the extension of $f(x)$ while the second integral only uses $f(x)$ on its original interval of definition.

Consequently, $(\mathrm{PDE})+(\mathrm{BC})+(\mathrm{IC})$ is solved by

$$
u(x, t)=\sum_{n=1}^{\infty} b_{n} u_{n}(x, t)=\sum_{n=1}^{\infty} b_{n} e^{-\left(\frac{\pi n}{L}\right)^{2} k t} \sin \left(\frac{\pi n}{L} x\right)
$$

where

$$
b_{n}=\frac{2}{L} \int_{0}^{L} f(x) \sin \left(\frac{n \pi x}{L}\right) \mathrm{d} x .
$$

Example 159. Find the unique solution $u(x, t)$ to: $\begin{aligned} & u_{t}=3 u_{x x} \\ & u(0, t)=u(4, t)=0\end{aligned}$

$$
\begin{equation*}
u(x, 0)=5 \sin (\pi x)-\sin (3 \pi x), \quad x \in(0,4) \tag{PDE}
\end{equation*}
$$

Solution. This is the case $k=3, L=4$ that we solved in Example 158 where we found that the functions

$$
u_{n}(x, t)=e^{-\left(\frac{\pi n}{L}\right)^{2} k t} \sin \left(\frac{\pi n}{L} x\right)=e^{-3\left(\frac{\pi n}{4}\right)^{2} t} \sin \left(\frac{\pi n}{4} x\right)
$$

solve $(\mathrm{PDE})+(\mathrm{BC})$. Since $u_{n}(x, 0)=\sin \left(\frac{\pi n}{4} x\right)$, we have

$$
5 u_{4}(x, 0)-u_{12}(x, 0)=5 \sin (\pi x)-\sin (3 \pi x),
$$

which is what we need for the right-hand side of (IC). Therefore, $(\mathrm{PDE})+(\mathrm{BC})+(\mathrm{IC})$ is solved by

$$
u(x, t)=5 u_{4}(x, t)-u_{12}(x, t)=5 e^{-3 \pi^{2} t} \sin (\pi x)-e^{-27 \pi^{2} t} \sin (3 \pi x)
$$

