Boundary value problems

Example 149. The **IVP** (initial value problem) y'' + 4y = 0, y(0) = 0, y'(0) = 0 has the unique solution y(x) = 0.

Initial value problems are often used when the problem depends on time. Then, y(0) and y'(0) describe the initial configuration at t = 0.

For problems which instead depend on spatial variables, such as position, it may be natural to specify values at positions on the boundary (for instance, if y(x) describes the steady-state temperature of a rod at position x, we might know the temperature at the two end points).

The next example illustrates that such a boundary value problem (BVP) may or may not have a unique solution.

Example 150. Verify the following claims.

- (a) The BVP y'' + 4y = 0, y(0) = 0, y(1) = 0 has the unique solution y(x) = 0.
- (b) The BVP $y'' + \pi^2 y = 0$, y(0) = 0, y(1) = 0 is solved by $y(x) = B \sin(\pi x)$ for any value B.

Solution.

- (a) We know that the general solution to the DE is $y(x) = A\cos(2x) + B\sin(2x)$. The boundary conditions imply $y(0) = A \stackrel{!}{=} 0$ and, using that A = 0, $y(1) = B\sin(2) \stackrel{!}{=} 0$ shows that B = 0 as well.
- (b) This time, the general solution to the DE is $y(x) = A \cos(\pi x) + B \sin(\pi x)$. The boundary conditions imply $y(0) = A \stackrel{!}{=} 0$ and, using that A = 0, $y(1) = B \sin(\pi) \stackrel{!}{=} 0$. This second condition is true for every B.

It is therefore natural to ask: for which λ does the BVP $y'' + \lambda y = 0$, y(0) = 0, y(L) = 0 have nonzero solutions? (We assume that L > 0.)

Such solutions are called **eigenfunctions** and λ is the corresponding **eigenvalue**.

Remark. Compare that to our previous use of the term eigenvalue: given a matrix A, we asked: for which λ does $Av - \lambda v = 0$ have nonzero solutions v? Such solutions were called eigenvectors and λ was the corresponding eigenvalue.

Example 151. Find all eigenfunctions and eigenvalues of $y'' + \lambda y = 0$, y(0) = 0, y(L) = 0. Such a problem is called an eigenvalue problem.

Solution. The solutions of the DE look different in the cases $\lambda < 0$, $\lambda = 0$, $\lambda > 0$, so we consider them individually.

- $\lambda = 0$. Then y(x) = Ax + B and y(0) = y(L) = 0 implies that y(x) = 0. No eigenfunction here.
- $\lambda < 0$. The roots of the characteristic polynomial are $\pm \sqrt{-\lambda}$. Writing $\rho = \sqrt{-\lambda}$, the general solution therefore is $y(x) = Ae^{\rho x} + Be^{-\rho x}$. $y(0) = A + B \stackrel{!}{=} 0$ implies B = -A. Using that, we get $y(L) = A(e^{\rho L} e^{-\rho L}) \stackrel{!}{=} 0$. For eigenfunctions we need $A \neq 0$, so $e^{\rho L} = e^{-\rho L}$ which implies $\rho L = -\rho L$. This cannot happen since $\rho \neq 0$ and $L \neq 0$. Again, no eigenfunctions in this case.
- $\lambda > 0$. The roots of the characteristic polynomial are $\pm i\sqrt{\lambda}$. Writing $\rho = \sqrt{\lambda}$, the general solution thus is $y(x) = A \cos(\rho x) + B \sin(\rho x)$. $y(0) = A \stackrel{!}{=} 0$. Using that, $y(L) = B \sin(\rho L) \stackrel{!}{=} 0$. Since $B \neq 0$ for eigenfunctions, we need $\sin(\rho L) = 0$. This happens if $\rho L = n\pi$ for n = 1, 2, 3, ... (since ρ and L are both positive, n must be positive as well). Equivalently, $\rho = \frac{n\pi}{L}$. Consequently, we find the eigenfunctions $y_n(x) = \sin\frac{n\pi x}{L}$, n = 1, 2, 3, ..., with eigenvalue $\lambda = (\frac{n\pi}{L})^2$.

Example 152. Suppose that a rod of length L is compressed by a force P (with ends being pinned [not clamped] down). We model the shape of the rod by a function y(x) on some interval [0, L].

The theory of elasticity predicts that, under certain simplifying assumptions, y should satisfy EIy'' + Py = 0, y(0) = 0, y(L) = 0.

Here, EI is a constant modeling the inflexibility of the rod (E, known as Young's modulus, depends on the material, and I depends on the shape of cross-sections (it is the area moment of inertia)).

In other words, $y'' + \lambda y = 0$, y(0) = 0, y(L) = 0, with $\lambda = \frac{P}{EI}$

The fact that there is no nonzero solution unless $\lambda = \left(\frac{\pi n}{L}\right)^2$ for some n = 1, 2, 3, ..., means that buckling can only occur if $P = \left(\frac{\pi n}{L}\right)^2 EI$. In particular, no buckling occurs for forces less than $\frac{\pi^2 EI}{L^2}$. This is known as the critical load (or Euler load) of the rod.

Comment. This is a very simplified model. In particular, it assumes that the deflections are small. (Technically, the buckled rod in our model is longer than L; of course, that's not the case in practice.)

https://en.wikipedia.org/wiki/Euler%27s_critical_load

Example 153. Find all eigenfunctions and eigenvalues of

$$y'' + \lambda y = 0, \quad y'(0) = 0, \quad y(3) = 0.$$

Solution. We distinguish three cases:

- $\lambda < 0$. The characteristic roots are $\pm r = \pm \sqrt{-\lambda}$ and the general solution to the DE is $y(x) = Ae^{rx} + Be^{-rx}$. Then y'(0) = Ar Br = 0 implies B = A, so that $y(3) = A(e^{3r} + e^{-3r})$. Since $e^{3r} + e^{-3r} > 0$, we see that y(3) = 0 only if A = 0. So there is no solution for $\lambda < 0$.
- $\lambda = 0$. The general solution to the DE is y(x) = A + Bx. Then y'(0) = 0 implies B = 0, and it follows from y(3) = A = 0 that $\lambda = 0$ is not an eigenvalue.
- $$\begin{split} \lambda > \mathbf{0}. \mbox{ The characteristic roots are } &\pm i\sqrt{\lambda}. \mbox{ So, with } r = \sqrt{\lambda}, \mbox{ the general solution is } y(x) = A\cos(rx) + \\ B\sin(rx). \ y'(0) = Br = 0 \mbox{ implies } B = 0. \mbox{ Then } y(3) = A\cos(3r) = 0. \mbox{ Note that } \cos(3r) = 0 \mbox{ is true if and only if } &3r = \frac{\pi}{2} + n\pi = \frac{(2n+1)\pi}{2} \mbox{ for some integer } n. \mbox{ Since } r > 0, \mbox{ we have } n \ge 0. \mbox{ Correspondingly, } \\ \lambda = r^2 = \left(\frac{(2n+1)\pi}{6}\right)^2 \mbox{ and } y(x) = \cos\left(\frac{(2n+1)\pi}{6}x\right). \end{split}$$

In summary, we have that the eigenvalues are $\lambda = \left(\frac{(2n+1)\pi}{6}\right)^2$, with n = 0, 1, 2, ... with corresponding eigenfunctions $y(x) = \cos\left(\frac{(2n+1)\pi}{6}x\right)$.

Partial differential equations

The heat equation

We wish to describe one-dimensional heat flow.

Comment. If this sounds very specialized, it might help to know that the heat equation is also used, for instance, in probability (Brownian motion), financial math (Black-Scholes), or chemical processes (diffusion equation).

Let u(x, t) describe the temperature at time t at position x.

If we model a heated rod of length L, then $x \in [0, L]$.

Notation. u(x,t) depends on two variables. When taking derivatives, we will use the notations $u_t = \frac{\partial}{\partial t}u$ and $u_{xx} = \frac{\partial^2}{\partial r^2}u$ for first and higher derivatives.

Experience tells us that heat flows from warmer to cooler areas and has an averaging effect.

Make a sketch of some temperature profile u(x, t) for fixed t.

As t increases, we expect maxima (where $u_{xx} < 0$) of that profile to flatten out (which means that $u_t < 0$); similarly, minima (where $u_{xx} > 0$) should go up (meaning that $u_t > 0$). The simplest relationship between u_t and u_{xx} which conforms with our expectation is $u_t = k u_{xx}$, with k > 0.

(heat equation)

 $u_t = k u_{xx}$

Note that the heat equation is a linear and homogeneous partial differential equation.

In particular, the principle of superposition holds: if u_1 and u_2 solve the heat equation, then so does $c_1u_1 + c_2u_2$.

Higher dimensions. In higher dimensions, the heat equation takes the form $u_t = k(u_{xx} + u_{yy})$ or $u_t = k(u_{xx} + u_{yy} + u_{zz})$. The heat equation is often written as $u_t = k\Delta u$, where $\Delta = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2}$ is the Laplace operator you may know from Calculus III.

The Laplacian Δu is also often written as $\Delta u = \nabla^2 u$. The operator $\nabla = (\partial / \partial x, \partial / \partial y)$ is pronounced "nabla" (Greek for a certain harp) or "del" (Persian for heart), and ∇^2 is short for the inner product $\nabla \cdot \nabla$.

Example 154. Note that u(x,t) = ax + b solves the heat equation.

Example 155. To get a feeling, let us find some other solutions to $u_t = u_{xx}$ (for starters, k = 1).

- For instance, u(x,t) = e^te^x is a solution.
 [Not a very interesting one for modeling heat flow because it increases exponentially in time.]
- ... to be continued ...
 Can you find further solutions?

Let us think about what is needed to describe a unique solution of the heat equation.

• Initial condition at t = 0: u(x, 0) = f(x) (IC)

This specifies an initial temperature distribution at time t = 0.

• **Boundary condition** at x = 0 and x = L:

Assuming that heat only enters/exits at the boundary (think of our rod as being insulated, except possibly at the two ends), we need some condition on the temperature at the ends. For instance:

 $\circ \quad u(0,t) = A, \ u(L,t) = B$

This models a rod where one end is kept at temperature A and the other end at temperature B.

 $\circ \quad u_x(0,t) = u_x(L,t) = 0$

This models a rod whose ends are insulated as well.

Under such assumptions, our physical intuition suggests that there should be a unique solution.

Important comment. We can always transform the case u(0,t) = A, u(L,t) = B into u(0,t) = u(L,t) = 0 by using the fact that u(t,x) = ax + b solves $u_t = ku_{xx}$. Can you spell this out?

(BC)