Fourier series with general period

There is nothing special about 2π -periodic functions considered before (except that $\cos(t)$ and $\sin(t)$ have fundamental period 2π). Note that $\cos(\pi t/L)$ and $\sin(\pi t/L)$ have period 2L.

Theorem 136. Every^{*} 2L-periodic function f can be written as a **Fourier series**

$$f(t) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left(a_n \cos\left(\frac{n\pi t}{L}\right) + b_n \sin\left(\frac{n\pi t}{L}\right) \right).$$

Technical detail*: f needs to be, e.g., piecewise smooth.

Also, if t is a discontinuity, then the Fourier series converges to the average $\frac{f(t^{-}) + f(t^{+})}{2}$.

The Fourier coefficients a_n , b_n are unique and can be computed as

$$a_n = \frac{1}{L} \int_{-L}^{L} f(t) \cos\left(\frac{n\pi t}{L}\right) \mathrm{d}t, \qquad b_n = \frac{1}{L} \int_{-L}^{L} f(t) \sin\left(\frac{n\pi t}{L}\right) \mathrm{d}t.$$

Comment. This follows from Theorem 131 because, if f(t) has period 2L, then $\tilde{f}(t) := f\left(\frac{L}{\pi}t\right)$ has period 2π .

Example 137. Find the Fourier series of the 2-periodic function $g(t) = \begin{cases} -1 & \text{for } t \in (-1,0) \\ +1 & \text{for } t \in (0,1) \\ 0 & \text{for } t = -1,0,1 \end{cases}$.

Solution. Instead of computing from scratch, we can use the fact that $g(t) = f(\pi t)$, with f as in the previous example, to get $g(t) = f(\pi t) = \sum_{\substack{n=1\\n \text{ odd}}}^{\infty} \frac{4}{\pi n} \sin(n\pi t)$.

Theorem 138. If f(t) is continuous and $f(t) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left(a_n \cos\left(\frac{n\pi t}{L}\right) + b_n \sin\left(\frac{n\pi t}{L}\right) \right)$, then* $f'(t) = \sum_{n=1}^{\infty} \left(\frac{n\pi}{L} b_n \cos\left(\frac{n\pi t}{L}\right) - \frac{n\pi}{L} a_n \sin\left(\frac{n\pi t}{L}\right) \right)$ (i.e., we can differentiate termwise).

Technical detail*: f' needs to be, e.g., piecewise smooth (so that it has a Fourier series itself).

Caution! We cannot simply differentiate termwise if f(t) is lacking continuity. See the next example.

Comment. On the other hand, we can integrate termwise (going from the Fourier series of f' = g to the Fourier series of $f = \int g$ because the latter will be continuous). This is illustrated in the example after the next.

Example 139. (caution!) The function $g(t) = \sum_{n \text{ odd } \frac{4}{\pi n}} \sin(n\pi t)$ from Example 137 is not continuous. For all values, except the discontinuities, we have g'(t) = 0. On the other hand, differentiating the Fourier series termwise, results in $4\sum_{n \text{ odd}} \cos(n\pi t)$, which diverges for most values of t (that's easy to check for t = 0). This illustrates that we cannot apply Theorem 138 because g(t) is lacking continuity.

[The issues we are facing here can be fixed by generalizing the notion of function to distributions. (Maybe you have heard of the Dirac delta "function".)]

Example 140. Let h(t) be the 2-periodic function with h(t) = |t| for $t \in [-1, 1]$. Compute the Fourier series of h(t).

Solution. We could just use the integral formulas to compute a_n and b_n . Since h(t) is even (plot it!), we will find that $b_n = 0$. Computing a_n is left as an exercise.

Solution. Note that $h(t) = \begin{cases} -t & \text{for } t \in (-1,0) \\ +t & \text{for } t \in (0,1) \end{cases}$ is continuous and h'(t) = g(t), with g(t) as in Example 137. Hence, we can apply Theorem 138 to conclude

$$h'(t) = g(t) = \sum_{\substack{n=1\\n \text{ odd}}}^{\infty} \frac{4}{\pi n} \sin(n\pi t) \implies h(t) = \sum_{\substack{n=1\\n \text{ odd}}}^{\infty} \frac{4}{\pi n} \left(-\frac{1}{\pi n}\right) \cos(n\pi t) + C,$$

where $C = \frac{a_0}{2} = \frac{1}{2} \int_{-1}^{1} h(t) dt = \frac{1}{2}$ is the constant of integration. Thus, $h(t) = \frac{1}{2} - \sum_{\substack{n=1\\n \text{ odd}}}^{\infty} \frac{4}{\pi^2 n^2} \cos(n\pi t)$.

Remark. Note that t = 0 in the last Fourier series, gives us $\frac{\pi^2}{8} = \frac{1}{1} + \frac{1}{3^2} + \frac{1}{5^2} + \dots$ As an exercise, you can try to find from here the fact that $\sum_{n \ge 1} \frac{1}{n^2} = \frac{\pi^2}{6}$. Similarly, we can use Fourier series to find that $\sum_{n \ge 1} \frac{1}{n^4} = \frac{\pi^4}{90}$. Just for fun. These are the values $\zeta(2)$ and $\zeta(4)$ of the Riemann zeta function $\zeta(s)$. No such evaluations are known for $\zeta(3), \zeta(5), \dots$ and we don't even know (for sure) whether these are rational numbers. Nobody believes these to be rational numbers, but it was only in 1978 that Apéry proved that $\zeta(3)$ is not a rational number.