Fourier series with general period

There is nothing special about 2π-periodic functions considered before (except that $\cos (t)$ and $\sin (t)$ have fundamental period $2 \pi)$. Note that $\cos (\pi t / L)$ and $\sin (\pi t / L)$ have period $2 L$.

Theorem 136. Every* $2 L$-periodic function f can be written as a Fourier series

$$
f(t)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty}\left(a_{n} \cos \left(\frac{n \pi t}{L}\right)+b_{n} \sin \left(\frac{n \pi t}{L}\right)\right)
$$

Technical detail*: f needs to be, e.g., piecewise smooth.
Also, if t is a discontinuity, then the Fourier series converges to the average $\frac{f\left(t^{-}\right)+f\left(t^{+}\right)}{2}$.
The Fourier coefficients a_{n}, b_{n} are unique and can be computed as

$$
a_{n}=\frac{1}{L} \int_{-L}^{L} f(t) \cos \left(\frac{n \pi t}{L}\right) \mathrm{d} t, \quad b_{n}=\frac{1}{L} \int_{-L}^{L} f(t) \sin \left(\frac{n \pi t}{L}\right) \mathrm{d} t .
$$

Comment. This follows from Theorem 131 because, if $f(t)$ has period $2 L$, then $\tilde{f}(t):=f\left(\frac{L}{\pi} t\right)$ has period 2π.
Example 137. Find the Fourier series of the 2-periodic function $g(t)=\left\{\begin{array}{ll}-1 & \text { for } t \in(-1,0) \\ +1 & \text { for } t \in(0,1) \\ 0 & \text { for } t=-1,0,1\end{array}\right.$.
Solution. Instead of computing from scratch, we can use the fact that $g(t)=f(\pi t)$, with f as in the previous example, to get $g(t)=f(\pi t)=\sum_{\substack{n=1 \\ n \text { odd }}}^{\infty} \frac{4}{\pi n} \sin (n \pi t)$.

Theorem 138. If $f(t)$ is continuous and $f(t)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty}\left(a_{n} \cos \left(\frac{n \pi t}{L}\right)+b_{n} \sin \left(\frac{n \pi t}{L}\right)\right)$, then* $f^{\prime}(t)=\sum_{n=1}^{\infty}\left(\frac{n \pi}{L} b_{n} \cos \left(\frac{n \pi t}{L}\right)-\frac{n \pi}{L} a_{n} \sin \left(\frac{n \pi t}{L}\right)\right)$ (i.e., we can differentiate termwise).
Technical detail ${ }^{*}$: f^{\prime} needs to be, e.g., piecewise smooth (so that it has a Fourier series itself).
Caution! We cannot simply differentiate termwise if $f(t)$ is lacking continuity. See the next example.
Comment. On the other hand, we can integrate termwise (going from the Fourier series of $f^{\prime}=g$ to the Fourier series of $f=\int g$ because the latter will be continuous). This is illustrated in the example after the next.

Example 139. (caution!) The function $g(t)=\sum_{n \text { odd }} \frac{4}{\pi n} \sin (n \pi t)$ from Example 137 is not continuous. For all values, except the discontinuities, we have $g^{\prime}(t)=0$. On the other hand, differentiating the Fourier series termwise, results in $4 \sum_{n \text { odd }} \cos (n \pi t)$, which diverges for most values of t (that's easy to check for $t=0$). This illustrates that we cannot apply Theorem 138 because $g(t)$ is lacking continuity.
[The issues we are facing here can be fixed by generalizing the notion of function to distributions. (Maybe you have heard of the Dirac delta "function".)]

Example 140. Let $h(t)$ be the 2-periodic function with $h(t)=|t|$ for $t \in[-1,1]$. Compute the Fourier series of $h(t)$.
Solution. We could just use the integral formulas to compute a_{n} and b_{n}. Since $h(t)$ is even (plot it!), we will find that $b_{n}=0$. Computing a_{n} is left as an exercise.
Solution. Note that $h(t)=\left\{\begin{array}{ll}-t & \text { for } t \in(-1,0) \\ +t & \text { for } t \in(0,1)\end{array}\right.$ is continuous and $h^{\prime}(t)=g(t)$, with $g(t)$ as in Example 137. Hence, we can apply Theorem 138 to conclude

$$
h^{\prime}(t)=g(t)=\sum_{\substack{n=1 \\ n \text { odd }}}^{\infty} \frac{4}{\pi n} \sin (n \pi t) \Longrightarrow h(t)=\sum_{\substack{n=1 \\ n \text { odd }}}^{\infty} \frac{4}{\pi n}\left(-\frac{1}{\pi n}\right) \cos (n \pi t)+C,
$$

where $C=\frac{a_{0}}{2}=\frac{1}{2} \int_{-1}^{1} h(t) \mathrm{d} t=\frac{1}{2}$ is the constant of integration. Thus, $h(t)=\frac{1}{2}-\sum_{\substack{n=1 \\ n \text { odd }}}^{\infty} \frac{4}{\pi^{2} n^{2}} \cos (n \pi t)$.

Remark. Note that $t=0$ in the last Fourier series, gives us $\frac{\pi^{2}}{8}=\frac{1}{1}+\frac{1}{3^{2}}+\frac{1}{5^{2}}+\ldots$. As an exercise, you can try to find from here the fact that $\sum_{n \geqslant 1} \frac{1}{n^{2}}=\frac{\pi^{2}}{6}$. Similarly, we can use Fourier series to find that $\sum_{n \geqslant 1} \frac{1}{n^{4}}=\frac{\pi^{4}}{90}$. Just for fun. These are the values $\zeta(2)$ and $\zeta(4)$ of the Riemann zeta function $\zeta(s)$. No such evaluations are known for $\zeta(3), \zeta(5), \ldots$ and we don't even know (for sure) whether these are rational numbers. Nobody believes these to be rational numbers, but it was only in 1978 that Apéry proved that $\zeta(3)$ is not a rational number.

