Power series of familiar functions

(Unless we specify otherwise, power series are meant to be about $x=0$.)
Example 126. The hyperbolic cosine $\cosh (x)$ is defined to be the even part of e^{x}. In other words, $\cosh (x)=\frac{1}{2}\left(e^{x}+e^{-x}\right)$. Determine its power series.
Solution. It follows from $e^{x}=\sum_{n=0}^{\infty} \frac{x^{n}}{n!}$ that $\cosh (x)=\sum_{n=0}^{\infty} \frac{x^{2 n}}{(2 n)!}$.
Comment. Note that $\cosh (i x)=\cos (x)$ (because $\cos (x)=\frac{1}{2}\left(e^{i x}+e^{-i x}\right)$).
Comment. The hyperbolic sine $\sinh (x)=\sum_{n=0}^{\infty} \frac{x^{2 n+1}}{(2 n+1)!}$ is similarly defined to be the odd part of e^{x}.
Example 127. Determine a power series for $\frac{1}{1+x^{2}}$.
Solution. Replace x with $-x^{2}$ in $\frac{1}{1-x}=\sum_{n=0}^{\infty} x^{n}$ (geometric series!) to get $\frac{1}{1+x^{2}}=\sum_{n=0}^{\infty}(-1)^{n} x^{2 n}$.
Example 128. Determine a power series for $\arctan (x)$.
Solution. Recall that $\arctan (x)=\int \frac{\mathrm{d} x}{1+x^{2}}+C$. Hence, we need to integrate $\frac{1}{1+x^{2}}=\sum_{n=0}^{\infty}(-1)^{n} x^{2 n}$. It follows that $\arctan (x)=\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n+1}}{2 n+1}+C$. Since $\arctan (0)=0$, we conclude that $C=0$.

Example 129. (error function) Determine a power series for $\operatorname{erf}(x)=\frac{2}{\sqrt{\pi}} \int_{0}^{x} e^{-t^{2}} \mathrm{~d} t$.
Solution. It follows from $e^{x}=\sum_{n=0}^{\infty} \frac{x^{n}}{n!}$ that $e^{-t^{2}}=\sum_{n=0}^{\infty} \frac{(-1)^{n} t^{2 n}}{n!}$.
Integrating, we obtain $\operatorname{erf}(x)=\frac{2}{\sqrt{\pi}} \int_{0}^{x} e^{-t^{2}} \mathrm{~d} t=\frac{2}{\sqrt{\pi}} \sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n+1}}{n!(2 n+1)}$.
Example 130. Determine the first several terms (up to x^{5}) in the power series of $\tan (x)$.
Solution. Observe that $y(x)=\tan (x)$ is the unique solution to the IVP $y^{\prime}=1+y^{2}, y(0)=0$.
We can therefore proceed to determine the first few power series coefficients as we did earlier.
That is, we plug $y=a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+a_{4} x^{4}+\ldots$ into the DE. Note that $y(0)=0$ means $a_{0}=0$.

$$
\begin{aligned}
& y^{\prime}=a_{1}+2 a_{2} x+3 a_{3} x^{2}+4 a_{4} x^{3}+5 a_{5} x^{4}+\ldots \\
& 1+y^{2}=1+\left(a_{1} x+a_{2} x^{2}+a_{3} x^{3}+\ldots\right)^{2}=1+a_{1}^{2} x^{2}+\left(2 a_{1} a_{2}\right) x^{3}+\left(2 a_{1} a_{3}+a_{2}^{2}\right) x^{4}+\ldots
\end{aligned}
$$

Comparing coefficients, we find: $a_{1}=1,2 a_{2}=0,3 a_{3}=a_{1}^{2}, 4 a_{4}=2 a_{1} a_{2}, 5 a_{5}=2 a_{1} a_{3}+a_{2}^{2}$.
Solving for a_{2}, a_{3}, \ldots, we conclude that $\tan (x)=x+\frac{x^{3}}{3}+\frac{2 x^{5}}{15}+\frac{17 x^{7}}{315}+\ldots$
Comment. The fact that $\tan (x)$ is an odd function translates into $a_{n}=0$ when n is even. If we had realized that at the beginning, our computation would have been simplified.
Advanced comment. The full power series is $\tan (x)=\sum_{n=1}^{\infty} \frac{(-1)^{n-1} 2^{2 n}\left(2^{2 n}-1\right) B_{2 n}}{(2 n)!} x^{2 n-1}$.
Here, the numbers $B_{2 n}$ are (rather mysterious) rational numbers known as Bernoulli numbers.
The radius of convergence is $\pi / 2$. Note that this is not at all obvious from the DE $y^{\prime}=1+y^{2}$. This illustrates the fact that nonlinear DEs are much more complicated than linear ones. (There is no analog of Theorem 114.)

Fourier series

The following amazing fact is saying that any 2π-periodic function can be written as a sum of cosines and sines.

Advertisement. In Linear Algebra II, we will see the following natural way to look at Fourier series: the functions $1, \cos (t), \sin (t), \cos (2 t), \sin (2 t), \ldots$ are orthogonal to each other (for that to make sense, we need to think of functions as vectors and introduce a natural inner product). In fact, they form an orthogonal basis for the space of piecewise smooth functions. In that setting, the formulas for the coefficients a_{n} and b_{n} are nothing but the usual projection formulas for orthogonal projection onto a single vector.

Theorem 131. Every* 2π-periodic function f can be written as a Fourier series

$$
f(t)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty}\left(a_{n} \cos (n t)+b_{n} \sin (n t)\right)
$$

Technical detail*: f needs to be, e.g., piecewise smooth.
Also, if t is a discontinuity of f, then the Fourier series converges to the average $\frac{f\left(t^{-}\right)+f\left(t^{+}\right)}{2}$.
The Fourier coefficients a_{n}, b_{n} are unique and can be computed as

$$
a_{n}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(t) \cos (n t) \mathrm{d} t, \quad b_{n}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(t) \sin (n t) \mathrm{d} t .
$$

Comment. Another common way to write Fourier series is $f(t)=\sum_{n=-\infty}^{\infty} c_{n} e^{i n t}$.
These two ways are equivalent; we can convert between them using Euler's identity $e^{i n t}=\cos (n t)+i \sin (n t)$.

Definition 132. Let $L>0 . f(t)$ is L-periodic if $f(t+L)=f(t)$ for all t. The smallest such L is called the (fundamental) period of f.

Example 133. The fundamental period of $\cos (n t)$ is $2 \pi / n$.

Example 134. The trigonometric functions $\cos (n t)$ and $\sin (n t)$ are 2π-periodic for every integer n. And so are their linear combinations. (Thus, 2π-periodic functions form a vector space!)

Example 135. Find the Fourier series of the 2π-periodic function $f(t)$ defined by

$$
f(t)= \begin{cases}-1, & \text { for } t \in(-\pi, 0) \\ +1, & \text { for } t \in(0, \pi) \\ 0, & \text { for } t=-\pi, 0, \pi\end{cases}
$$

Solution. We compute $a_{0}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(t) \mathrm{d} t=0$, as well as

$$
\begin{aligned}
a_{n} & =\frac{1}{\pi} \int_{-\pi}^{\pi} f(t) \cos (n t) \mathrm{d} t=\frac{1}{\pi}\left[-\int_{-\pi}^{0} \cos (n t) \mathrm{d} t+\int_{0}^{\pi} \cos (n t) \mathrm{d} t\right]=0 \\
b_{n} & =\frac{1}{\pi} \int_{-\pi}^{\pi} f(t) \sin (n t) \mathrm{d} t=\frac{1}{\pi}\left[-\int_{-\pi}^{0} \sin (n t) \mathrm{d} t+\int_{0}^{\pi} \sin (n t) \mathrm{d} t\right]=\frac{2}{\pi n}[1-\cos (n \pi)] \\
& =\frac{2}{\pi n}\left[1-(-1)^{n}\right]= \begin{cases}\frac{4}{\pi n} & \text { if } n \text { is odd } \\
0 & \text { if } n \text { is even }\end{cases}
\end{aligned}
$$

In conclusion, $f(t)=\sum_{\substack{n=1 \\ n \text { odd }}}^{\infty} \frac{4}{\pi n} \sin (n t)=\frac{4}{\pi}\left(\sin (t)+\frac{1}{3} \sin (3 t)+\frac{1}{5} \sin (5 t)+\ldots\right)$.

Observation. The coefficients a_{n} are zero for all n if and only if $f(t)$ is odd.
Comment. The value of $f(t)$ for $t=-\pi, 0, \pi$ is irrelevant to the computation of the Fourier series. They are chosen so that $f(t)$ is equal to the Fourier series for all t (recall that, at a jump discontinuity t, the Fourier series converges to the average $\left.\frac{f\left(t^{-}\right)+f\left(t^{+}\right)}{2}\right)$.
Comment. Plot the (sum of the) first few terms of the Fourier series. What do you observe? The "overshooting" is known as the Gibbs phenomenon: https://en.wikipedia.org/wiki/Gibbs_phenomenon
Comment. Set $t=\frac{\pi}{2}$ in the Fourier series we just computed, to get Leibniz' series $\pi=4\left[1-\frac{1}{3}+\frac{1}{5}-\frac{1}{7}+\ldots\right]$. For such an alternating series, the error made by stopping at the term $1 / n$ is on the order of $1 / n$. To compute the 768 digits of π to get to the Feynman point (3.14159265...721134999999...), we would (roughly) need $1 / n<10^{-768}$, or $n>10^{768}$. That's a lot of terms! (Roger Penrose, for instance, estimates that there are about 10^{80} atoms in the observable universe.)
Remark. Convergence of such series is not completely obvious! Recall, for instance, that the (odd part of) the harmonic series $1+\frac{1}{3}+\frac{1}{5}+\frac{1}{7}+\cdots$ diverges. (On the other hand, do you rememember the alternating sign test from Calculus II?)

