Review. Theorem 114: If x_{0} is an ordinary point of a linear IVP, then it is guaranteed to have a power series solution $y(x)=\sum_{n=0}^{\infty} a_{n}\left(x-x_{0}\right)^{n}$.
Moreover, its radius of convergence is at least the distance between x_{0} and the closest singular point.
Example 118. Find a minimum value for the radius of convergence of a power series solution to $\left(x^{2}+4\right) y^{\prime \prime}-3 x y^{\prime}+\frac{1}{x+1} y=0$ at $x=2$.
Solution. The singular points are $x= \pm 2 i,-1$. Hence, $x=2$ is an ordinary point of the DE and the distance to the nearest singular point is $|2-2 i|=\sqrt{2^{2}+2^{2}}=\sqrt{8}$ (the distances are $\left.|2-(-1)|=3,|2-(\pm 2 i)|=\sqrt{8}\right)$.
By Theorem 114, the DE has power series solutions about $x=2$ with radius of convergence at least $\sqrt{8}$.
Example 119. (caution!) Theorem 114 only holds for linear DEs! For nonlinear DEs, it is very hard to predict whether there is a power series solution and what its radius of convergence is.
Consider, for instance, the nonlinear DE $y^{\prime}-y^{2}=0$.
Its coefficients have no singularities. A solution to this DE is $y(x)=\frac{1}{1-x}=\sum_{n=0}^{\infty} x^{n}$ (see Example 122), which clearly has a problem at $x=1$ (the radius of convergence is 1).
On the other hand. $y(x)$ also solves the linear $\mathrm{DE}(1-x) y^{\prime}-y=0$ (or, even simpler, the order 0 "differential" equation $(1-x) y=1)$. Note how the DE has the singular point $x=1$. Theorem 114 then allows us to predict that $y(x)$ must have a power series with radius of convergence at least 1 .

Example 120. (Bessel functions) Consider the DE $x^{2} y^{\prime \prime}+x y^{\prime}+x^{2} y=0$. Derive a recursive description of a power series solutions $y(x)$ at $x=0$.
Caution! Note that $x=0$ is a singular point (the only) of the DE. Theorem 114 therefore does not guarantee a basis of power series solutions. [However, $x=0$ is what is called a regular singular point; for these, we are guaranteed one power series solution, as well as additional solutions expressed using logarithms and power series.]
Comment. We could divide the DE by x (but that wouldn't really change the computations below). The reason for not dividing that x is that this DE is the special case $\alpha=0$ of the Bessel equation $x^{2} y^{\prime \prime}+x y^{\prime}+\left(x^{2}-\alpha^{2}\right) y=$ 0 (for which no such dividing is possible).
Solution. (plug in power series) Let us spell out power series for $x^{2} y, x y^{\prime}, x^{2} y^{\prime \prime}$ starting with $y(x)=\sum_{n=0}^{\infty} a_{n} x^{n}$:

$$
x^{2} y(x)=\sum_{n=0}^{\infty} a_{n} x^{n+2}=\sum_{n=2}^{\infty} a_{n-2} x^{n}
$$

$$
x y^{\prime}(x)=\sum_{n=1}^{\infty} n a_{n} x^{n} \quad\left(\text { because } y^{\prime}(x)=\sum_{n=1}^{\infty} n a_{n} x^{n-1}\right)
$$

$$
x^{2} y^{\prime \prime}(x)=\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n} \quad \infty \quad \text { (because } y^{\prime \prime}(x)=\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2} \text {) }
$$

Hence, the DE becomes $\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n}+\sum_{n=1}^{\infty} n a_{n} x^{n}+\sum_{n=2}^{\infty} a_{n-2} x^{n}=0$. We compare coefficients of x^{n} :

- $\quad n=1: \quad a_{1}=0$
- $n \geqslant 2: \quad n(n-1) a_{n}+n a_{n}+a_{n-2}=0$, which simplifies to $n^{2} a_{n}=-a_{n-2}$.

It follows that $a_{2 n}=\frac{(-1)^{n}}{4^{n} n!^{2}} a_{0}$ and $a_{2 n+1}=0$.
Observation. The fact that we found $a_{1}=0$ reflects the fact that we cannot represent the general solution through power series alone.
Comment. If $a_{0}=1$, the function we found is a Bessel function and denoted as $J_{0}(x)=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{n!^{2}}\left(\frac{x}{2}\right)^{2 n}$. The more general Bessel functions $J_{\alpha}(x)$ are solutions to the DE $x^{2} y^{\prime \prime}+x y^{\prime}+\left(x^{2}-\alpha^{2}\right) y=0$.

Example 121. (caution!) Consider the linear DE $x^{2} y^{\prime}=y-x$. Does it have a convergent power series solution at $x=0$?
Important note. The DE $x^{2} y^{\prime}=y-x$ has the singular point $x=0$. Hence, Theorem 114 does not apply.
Advanced. Moreover, in contrast to the previous example, $x=0$ is not a regular singular point. Indeed, as we see below, there is no power series solution of the DE at all.
$\left.\begin{array}{c}\text { Solution. Let us look for a power series solution } \\ \infty \\ \infty \\ \infty\end{array}\right)=\sum_{n=0}^{\infty} a_{n} x^{n}$.
$x^{2} y^{\prime}(x)=x^{2} \sum_{n=1}^{\infty} n a_{n} x^{n-1}=\sum_{n=1}^{\infty} n a_{n} x^{n+1}=\sum_{n=2}^{\infty} \begin{gathered}n=0 \\ (n-1) a_{n-1} x^{n}\end{gathered}$
Hence, $x^{2} y^{\prime}=y-x$ becomes $\sum_{n=2}^{\infty}(n-1) a_{n-1} x^{n}=\sum_{n=0}^{\infty} a_{n} x^{n}-x$. We compare coefficients of x^{n} :

- $n=0: a_{0}=0$.
- $n=1: \quad 0=a_{1}-1$, so that $a_{1}=1$.
- $n \geqslant 2:(n-1) a_{n-1}=a_{n}$, from which it follows that $a_{n}=(n-1) a_{n-1}=(n-1)(n-2) a_{n-2}=\cdots=$ $(n-1)!a_{1}=(n-1)!$.
Hence the DE has the "formal" power series solution $y(x)=\sum_{n=1}^{\infty}(n-1)!x^{n}$.
However, that series is divergent for all $x \neq 0$; that is, the radius of convergence is 0 .

Inverses of power series

Example 122. (geometric series) $\sum_{n=0}^{\infty} x^{n}=\frac{1}{1-x}$
Why? If $y(x)=\sum_{n=0}^{\infty} x^{n}$, then $x y=y-1$ (write down the power series for both sides!). Hence, $y=\frac{1}{1-x}$.
Alternatively, start with $y=\frac{1}{1-x}$ and note that y solves the order 0 "differential" (inhomogeneous) equation $(1-x) y=1$. We can then determine a power series solution as we did in Example 110 to find $y=\sum_{n=0}^{\infty} x^{n}$.

Example 123. (extra) Determine a power series for $\ln (x)$ around $x=1$.
Solution. This is equivalent to finding a power series for $\ln (x+1)$ around $x=0$ (see the final step).
Observe that $\ln (x+1)=\int \frac{\mathrm{d} x}{1+x}+C$ and that $\frac{1}{1+x}=\sum_{n=0}^{\infty}(-1)^{n} x^{n}$.
Integrating, $\ln (x+1)=\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{n+1}}{n+1}+C$. Since $\ln (1)=0$, we conclude that $C=0$.
Finally, $\ln (x+1)=\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{n+1}}{n+1}$ is equivalent to $\ln (x)=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{n+1}(x-1)^{n+1}$.
Comment. Choosing $x=2$ in $\ln (x)=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{n+1}(x-1)^{n+1}$ results in $\ln (2)=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{n+1}=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\ldots$.
The latter is the alternating harmonic sum.
Can you see from the series for $\ln (x)$ why the harmonic sum $1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\ldots$ diverges?

Example 124. Derive a recursive description of the power series for $y(x)=\frac{1}{1-x-x^{2}}$.
Solution. Note that $y(x)$ satisfies the "differential" equation $\left(1-x-x^{2}\right) y=1$ of order 0 (as such, we need 0 initial conditions). We can therefore determine a power series solution as we did in Example 110:
Write $y(x)=\sum_{n=0}^{\infty} a_{n} x^{n}$. Then

$$
\begin{aligned}
1=\left(1-x-x^{2}\right) \sum_{n=0}^{\infty} a_{n} x^{n} & =\sum_{n=0}^{\infty} a_{n} x^{n}-\sum_{n=0}^{\infty} a_{n} x^{n+1}-\sum_{n=0}^{\infty} a_{n} x^{n+2} \\
& =\sum_{n=0}^{\infty} a_{n} x^{n}-\sum_{n=1}^{\infty} a_{n-1} x^{n}-\sum_{n=2}^{\infty} a_{n-2} x^{n}
\end{aligned}
$$

We compare coefficients of x^{n} :

- $n=0: \quad 1=a_{0}$.
- $\quad n=1: \quad 0=a_{1}-a_{0}$, so that $a_{1}=a_{0}=1$.
- $n \geqslant 2: \quad 0=a_{n}-a_{n-1}-a_{n-2}$ or, equivalently, $a_{n}=a_{n-1}+a_{n-2}$.

This is the recursive description of the Fibonacci numbers F_{n} ! In particular $a_{n}=F_{n}$.
The first few terms. $\frac{1}{1-x-x^{2}}=1+x+2 x^{2}+3 x^{3}+5 x^{4}+8 x^{5}+13 x^{6}+\ldots$
Comment. The function $y(x)$ is said to be a generating function for the Fibonacci numbers.
Challenge. Can you rederive Binet's formula from partial fractions and the geometric series?

Example 125. (HW) Derive a recursive description of the power series for $y(x)=\frac{1+7 x}{1-x-2 x^{2}}$. Solution. Write $y(x)=\sum_{n=0}^{\infty} a_{n} x^{n}$. Then

$$
\begin{aligned}
1+7 x=\left(1-x-2 x^{2}\right) \sum_{n=0}^{\infty} a_{n} x^{n} & =\sum_{n=0}^{\infty} a_{n} x^{n}-\sum_{n=0}^{\infty} a_{n} x^{n+1}-2 \sum_{n=0}^{\infty} a_{n} x^{n+2} \\
& =\sum_{n=0}^{\infty} a_{n} x^{n}-\sum_{n=1}^{\infty} a_{n-1} x^{n}-2 \sum_{n=2}^{\infty} a_{n-2} x^{n}
\end{aligned}
$$

We compare coefficients of x^{n} :

- $\quad n=0: 1=a_{0}$.
- $n=1: \quad 7=a_{1}-a_{0}$, so that $a_{1}=7+a_{0}=8$.
- $n \geqslant 2: \quad 0=a_{n}-a_{n-1}-2 a_{n-2}$.

If we prefer, we can rewrite the final recurrence as $a_{n+2}-a_{n+1}-2 a_{n}=0$ for $n \geqslant 0$. The initial conditions are $a_{0}=1, a_{1}=8$.
Comment. In terms of the recurrence operator N, the recurrence is $\left(N^{2}-N-2\right) a_{n}=0$.
Comment. As in Example 55, we can solve this recurrence and obtain a Binet-like formula for a_{n}. In this particular case, we find $a_{n}=3 \cdot 2^{n}-2(-1)^{n}$.

