Notes for Lecture 16 Fri, 9/29/2023

dx

Example 83. Consider the system 3 = 9T — Y, %: 2y — 4.
(a) Determine the general solution.

(b) Make a phase portrait.

(c) Determine all equilibrium points and their stability.

Solution.

/
(a) Note that we can write this is in matrix form as [ z ] = M{ 2 ] with M = —[ 40 712 ], where the matrix
is exactly —1 times what it was in Example 82.
Consequently, M has 1-eigenvector { i ] as well as 6G-eigenvector [ 711 ] (can you explain why the eigen-

vectors are the same and the eigenvalues changed sign?).

Thus, the general solution is [ 28 ]: Cl[ 411 }et—i— Cg[ 711 }66’/.

(b) We can have Sage make the plot for us:

>>> x,y = var(’x y?)
plot = streamline_plot((5*x-y,-4*x+2xy), (x,-4,4), (y,-4,4))
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Note that the phase portrait is identical to the one in Example 82, except that the arrows are reversed.

(c) The only equilibrium point is (0,0) and it is unstable.
We can see this from the phase portrait but we can also see it readily from our general solution { Z;Eg ] =

Cl[ i }et—l—Cg[ 711 }eﬁt because e? and % go to oo as t — co.
In general. If at least one eigenvalue is positive, then the equilibrium is unstable.
dz dy . x(t)
Example 84. Suppose the system —- = flx, v), 4 = g(x, y) has general solution v | =

Cl{ 31 €_t+02{ _11 }661&. Determine all equilibrium points and their stability.

Solution. Clearly, the only constant solution is the zero solution { zég ]:{ 8 ] Equivalently, the only equilibrium
point is (0,0).
Since €5? — 0o as t — 00, we conclude that the equilibrium is unstable. (Note that the solution C’g{ 711 ]GGt

starts arbitrarily near to (0,0) but always “flows away").
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| Excursion: Euler’s identity |

| Theorem 85. (Euler’s identity) ¢'® = cos(z) + i sin(z) |

Proof. Observe that both sides are the (unique) solution to the IVP y' =1y, y(0)=1.
[Check that by computing the derivatives and verifying the initial condition! As we did in class.] O

On lots of T-shirts. In particular, with x = 7, we get ore'™ +1=0 (which connects the five

fundamental constants).
.. .- . . . .. 92 1 — cos(2x)
Example 86. Where do trig identities like sin(2x) =2cos(z)sin(z) or sin®(z) = ——-— (and
infinitely many others you have never heard of!) come from?
Short answer: they all come from the simple exponential law e* ¥ = e%e¥,

Let us illustrate this in the simple case (¢?)? = e2*. Observe that

e?"® = cos(2x) +isin(2x)
e'®el® = [cos(x) +isin(x)]? = cos?(x) — sin?(z) + 2i cos(z)sin(z).
Comparing imaginary parts (the “stuff with an "), we conclude that sin(2z) = 2cos(z)sin(x).
Likewise, comparing real parts, we read off cos(2z) = cos?(x) — sin?(x).
(Use cos?(z) +sin?(z) = 1 to derive sin?(x) = 2=%%) from the last equation.)
Challenge. Can you find a triple-angle trig identity for cos(3z) and sin(3z) using (e%)3 = e3%7?

Or, use e'(*TY) = ¢i¢iV to derive cos(z + y) = cos(z)cos(y) — sin(z)sin(y) and sin(z + y) = ... (that’s what
we actually did in class).

Realize that the complex number ¢ = cos(6) +isin(#) corresponds to the point (cos(f),sin()).

These are precisely the points on the unit circle!

Recall that a point (x, y) can be represented using polar coordinates (7, ), where r is the
distance to the origin and 6 is the angle with the x-axis.

Then, x =1 cosf and y = sinf.

Every complex number z can be written in polar form as z =re®, with r =|z|.

Why? By comparing with the usual polar coordinates (z = cosf and y = sinf), we can write
z=x 4 iy =rcosh +irsind =re?.

In the final step, we used Euler’s identity.
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