Example 83. Consider the system $\frac{\mathrm{d} x}{\mathrm{~d} t}=5 x-y, \frac{\mathrm{~d} y}{\mathrm{~d} t}=2 y-4 x$.
(a) Determine the general solution.
(b) Make a phase portrait.
(c) Determine all equilibrium points and their stability.

Solution.

(a) Note that we can write this is in matrix form as $\left[\begin{array}{l}x \\ y\end{array}\right]^{\prime}=M\left[\begin{array}{l}x \\ y\end{array}\right]$ with $M=-\left[\begin{array}{cc}-5 & 1 \\ 4 & -2\end{array}\right]$, where the matrix is exactly -1 times what it was in Example 82.
Consequently, M has 1 -eigenvector $\left[\begin{array}{l}1 \\ 4\end{array}\right]$ as well as 6 -eigenvector $\left[\begin{array}{c}-1 \\ 1\end{array}\right]$ (can you explain why the eigenvectors are the same and the eigenvalues changed sign?).
Thus, the general solution is $\left[\begin{array}{l}x(t) \\ y(t)\end{array}\right]=C_{1}\left[\begin{array}{l}1 \\ 4\end{array}\right] e^{t}+C_{2}\left[\begin{array}{c}-1 \\ 1\end{array}\right] e^{6 t}$.
(b) We can have Sage make the plot for us:

```
>>> x,y = var('x y')
    plot = streamline_plot((5*x-y,-4*x+2*y), (x,-4,4), (y,-4,4))
```


Note that the phase portrait is identical to the one in Example 82, except that the arrows are reversed.
(c) The only equilibrium point is $(0,0)$ and it is unstable.

We can see this from the phase portrait but we can also see it readily from our general solution $\left[\begin{array}{l}x(t) \\ y(t)\end{array}\right]=$ $C_{1}\left[\begin{array}{l}1 \\ 4\end{array}\right] e^{t}+C_{2}\left[\begin{array}{c}-1 \\ 1\end{array}\right] e^{6 t}$ because e^{t} and $e^{6 t}$ go to ∞ as $t \rightarrow \infty$.
In general. If at least one eigenvalue is positive, then the equilibrium is unstable.
Example 84. Suppose the system $\frac{\mathrm{d} x}{\mathrm{~d} t}=f(x, y), \frac{\mathrm{d} y}{\mathrm{~d} t}=g(x, y)$ has general solution $\left[\begin{array}{l}x(t) \\ y(t)\end{array}\right]=$ $C_{1}\left[\begin{array}{l}1 \\ 4\end{array}\right] e^{-t}+C_{2}\left[\begin{array}{c}-1 \\ 1\end{array}\right] e^{6 t}$. Determine all equilibrium points and their stability.
Solution. Clearly, the only constant solution is the zero solution $\left[\begin{array}{l}x(t) \\ y(t)\end{array}\right]=\left[\begin{array}{l}0 \\ 0\end{array}\right]$. Equivalently, the only equilibrium point is $(0,0)$.
Since $e^{6 t} \rightarrow \infty$ as $t \rightarrow \infty$, we conclude that the equilibrium is unstable. (Note that the solution $C_{2}\left[\begin{array}{c}-1 \\ 1\end{array}\right] e^{6 t}$ starts arbitrarily near to $(0,0)$ but always "flows away").

Excursion: Euler's identity

Theorem 85. (Euler's identity) $e^{i x}=\cos (x)+i \sin (x)$

Proof. Observe that both sides are the (unique) solution to the IVP $y^{\prime}=i y, y(0)=1$.
[Check that by computing the derivatives and verifying the initial condition! As we did in class.]
On lots of \mathbf{T}-shirts. In particular, with $x=\pi$, we get $e^{\pi i}=-1$ or $e^{i \pi}+1=0$ (which connects the five fundamental constants).

Example 86. Where do trig identities like $\sin (2 x)=2 \cos (x) \sin (x)$ or $\sin ^{2}(x)=\frac{1-\cos (2 x)}{2}$ (and infinitely many others you have never heard of!) come from?
Short answer: they all come from the simple exponential law $e^{x+y}=e^{x} e^{y}$.
Let us illustrate this in the simple case $\left(e^{x}\right)^{2}=e^{2 x}$. Observe that

$$
\begin{aligned}
e^{2 i x} & =\cos (2 x)+i \sin (2 x) \\
e^{i x} e^{i x} & =[\cos (x)+i \sin (x)]^{2}=\cos ^{2}(x)-\sin ^{2}(x)+2 i \cos (x) \sin (x)
\end{aligned}
$$

Comparing imaginary parts (the "stuff with an i^{\prime}), we conclude that $\sin (2 x)=2 \cos (x) \sin (x)$.
Likewise, comparing real parts, we read off $\cos (2 x)=\cos ^{2}(x)-\sin ^{2}(x)$.
(Use $\cos ^{2}(x)+\sin ^{2}(x)=1$ to derive $\sin ^{2}(x)=\frac{1-\cos (2 x)}{2}$ from the last equation.)
Challenge. Can you find a triple-angle trig identity for $\cos (3 x)$ and $\sin (3 x)$ using $\left(e^{x}\right)^{3}=e^{3 x}$?
Or, use $e^{i(x+y)}=e^{i x} e^{i y}$ to derive $\cos (x+y)=\cos (x) \cos (y)-\sin (x) \sin (y)$ and $\sin (x+y)=\ldots$ (that's what we actually did in class).

Realize that the complex number $e^{i \theta}=\cos (\theta)+i \sin (\theta)$ corresponds to the point $(\cos (\theta), \sin (\theta))$. These are precisely the points on the unit circle!

Recall that a point (x, y) can be represented using polar coordinates (r, θ), where r is the distance to the origin and θ is the angle with the x-axis.

Then, $x=r \cos \theta$ and $y=r \sin \theta$.

Every complex number z can be written in polar form as $z=r e^{i \theta}$, with $r=|z|$.

Why? By comparing with the usual polar coordinates $(x=r \cos \theta$ and $y=r \sin \theta)$, we can write

$$
z=x+i y=r \cos \theta+i r \sin \theta=r e^{i \theta} .
$$

In the final step, we used Euler's identity.

