Systems of differential equations

Example 69. (review) Write the (second-order) differential equation y'' = 2y' + y as a system of (first-order) differential equations.

Solution. If $\boldsymbol{y} = \begin{bmatrix} y \\ y' \end{bmatrix}$, then $\boldsymbol{y}' = \begin{bmatrix} y' \\ y'' \end{bmatrix} = \begin{bmatrix} y' \\ 2y'+y \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 1 & 2 \end{bmatrix} \begin{bmatrix} y \\ y' \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 1 & 2 \end{bmatrix} \boldsymbol{y}$. For short, $\boldsymbol{y}' = \begin{bmatrix} 0 & 1 \\ 1 & 2 \end{bmatrix} \boldsymbol{y}$.

Comment. Hence, we care about systems of differential equations, even if we work with just one function.

Example 70. Write the (third-order) differential equation y''' = 3y'' - 2y' + y as a system of (first-order) differential equations.

Solution. If
$$y = \begin{bmatrix} y \\ y' \\ y'' \end{bmatrix}$$
, then $y' = \begin{bmatrix} y' \\ y'' \\ y''' \end{bmatrix} = \begin{bmatrix} y' \\ y'' \\ 3y'' - 2y' + y \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & -2 & 3 \end{bmatrix} \begin{bmatrix} y \\ y' \\ y'' \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & -2 & 3 \end{bmatrix} y$.

Example 71. Consider the following system of (second-order) initial value problems:

$$\begin{array}{ll} y_1''=2y_1'-3y_2'+7y_2\\ y_2''=4y_1'+y_2'-5y_1 \end{array} \quad y_1(0)=2, \ y_1'(0)=3, \ y_2(0)=-1, \ y_2'(0)=1 \end{array}$$

Write it as a first-order initial value problem in the form y' = My, $y(0) = y_0$.

Solution. If
$$\boldsymbol{y} = \begin{bmatrix} y_1 \\ y_2 \\ y_1' \\ y_2' \end{bmatrix}$$
, then $\boldsymbol{y}' = \begin{bmatrix} y_1' \\ y_2' \\ y_1'' \\ y_2'' \end{bmatrix} = \begin{bmatrix} y_1' \\ y_2' \\ 2y_1' - 3y_2' + 7y_2 \\ 4y_1' + y_2' - 5y_1 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 7 & 2 & -3 \\ -5 & 0 & 4 & 1 \end{bmatrix} \begin{bmatrix} y_1 \\ y_2 \\ y_1' \\ y_2' \end{bmatrix} = \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 7 & 2 & -3 \\ -5 & 0 & 4 & 1 \end{bmatrix} \boldsymbol{y}.$
For short, the system translates into $\boldsymbol{y}' = \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 7 & 2 & -3 \\ -5 & 0 & 4 & 1 \end{bmatrix} \boldsymbol{y}$ with $\boldsymbol{y}(0) = \begin{bmatrix} 2 \\ -1 \\ 3 \\ 1 \end{bmatrix}.$

To solve y' = My, determine the eigenvectors of M.

Г

- Each λ -eigenvector \boldsymbol{v} provides a solution: $\boldsymbol{y}(x) = \boldsymbol{v}e^{\lambda x}$
- If there are enough eigenvectors, these combine to the general solution.

(systems of DEs) The unique solution to y' = My, y(0) = c is $y(x) = e^{Mx}c$.

- Here, e^{Mx} is the fundamental matrix solution to y' = My, y(0) = I (with I the identity matrix).
- If $\Phi(x)$ is any fundamental matrix solution to y' = My, then $e^{Mx} = \Phi(x)\Phi(0)^{-1}$.
- To construct a fundamental matrix solution Φ(x), we compute eigenvectors:
 Given a λ-eigenvector v, we have the corresponding solution y(x) = ve^{λx}.
 If there are enough eigenvectors, we can collect these as columns to obtain Φ(x).

Note. We are defining the matrix exponential e^{Mx} as the solution to an IVP. This is equivalent to how one can define the ordinary exponential e^x as the solution to y' = y, y(0) = 1.

[In a little bit, we will also discuss how to think about the matrix exponential e^{Mx} using power series.]

Comment. If there are not enough eigenvectors, then we know what to do (at least in principle): instead of looking only for solutions of the type $y(x) = ve^{\lambda x}$, we also need to look for solutions of the type $y(x) = (vx + w)e^{\lambda x}$. Note that this can only happen if an eigenvalue is a repeated root of the characteristic polynomial.

Important. Compare this to our method of solving systems of REs and for computing matrix powers M^n . Note that the above conclusion about systems of DEs can be deduced along the same lines as what we did for REs:

- If Φ(x) is a fundamental matrix solution, then so is Ψ(x) = Φ(x)C for every constant matrix C. (Why?!) Therefore, Ψ(x) = Φ(x)Φ(0)⁻¹ is a fundamental matrix solution with Ψ(0) = Φ(0)Φ(0)⁻¹ = I. But e^{Mx} is defined to be the unique such solution, so that Ψ(x) = e^{Mx}.
- Let us look for solutions of y' = My of the form y(x) = ve^{λx}. Note that y' = λve^{λx} = λy. Plugging into y' = My, we find λy = My. In other words, y(x) = ve^{λx} is a solution if and only if v is a λ-eigenvector of M.

Observe how the next example proceeds along the same lines as Example 62.

Important. In fact, we can translate back and forth (without additional computations) by simply replacing 3^n and $(-2)^n$ by e^{3x} and e^{-2x} .

Example 72. (homework) Let $M = \begin{bmatrix} 8 & -10 \\ 5 & -7 \end{bmatrix}$.

- (a) Determine the general solution to y' = My.
- (b) Determine a fundamental matrix solution to y' = My.
- (c) Compute e^{Mx} .
- (d) Solve the initial value problem $\mathbf{y}' = M\mathbf{y}$ with $\mathbf{y}(0) = \begin{bmatrix} 0\\1 \end{bmatrix}$.

Solution.

(a) Recall that each λ -eigenvector \boldsymbol{v} of M provides us with a solution: namely, $\boldsymbol{y}(x) = \boldsymbol{v}e^{\lambda x}$. We computed earlier that $\begin{bmatrix} 2\\1 \end{bmatrix}$ is an eigenvector for $\lambda = 3$, and $\begin{bmatrix} 1\\1 \end{bmatrix}$ is an eigenvector for $\lambda = -2$. Hence, the general solution is $C_1 \begin{bmatrix} 2\\1 \end{bmatrix} e^{3x} + C_2 \begin{bmatrix} 1\\1 \end{bmatrix} e^{-2x}$.

(b) The corresponding fundamental matrix solution is $\Phi(x) = \begin{bmatrix} 2 \cdot e^{3x} & e^{-2x} \\ e^{3x} & e^{-2x} \end{bmatrix}$. [Note that our general solution is precisely $\Phi(x) \begin{bmatrix} C_1 \\ C_2 \end{bmatrix}$.]

(c) Since $\Phi(0) = \begin{bmatrix} 2 & 1 \\ 1 & 1 \end{bmatrix}$, we have $\Phi(0)^{-1} = \begin{bmatrix} 1 & -1 \\ -1 & 2 \end{bmatrix}$. It follows that

$$e^{Mx} = \Phi(x)\Phi(0)^{-1} = \begin{bmatrix} 2 \cdot e^{3x} & e^{-2x} \\ e^{3x} & e^{-2x} \end{bmatrix} \begin{bmatrix} 1 & -1 \\ -1 & 2 \end{bmatrix} = \begin{bmatrix} 2 \cdot e^{3x} - e^{-2x} & -2 \cdot e^{3x} + 2e^{-2x} \\ e^{3x} - e^{-2x} & -e^{3x} + 2e^{-2x} \end{bmatrix}.$$

Check. Let us verify the formula for e^{Mx} in the simple case x = 0: $e^{M0} = \begin{bmatrix} 2 - 1 & -2 + 2 \\ 1 - 1 & -1 + 2 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$

(d) The solution to the IVP is $\mathbf{y}(x) = e^{Mx} \begin{bmatrix} 0\\1 \end{bmatrix} = \begin{bmatrix} -2 \cdot e^{3x} + 2e^{-2x}\\ -e^{3x} + 2e^{-2x} \end{bmatrix}$ (the second column of e^{Mx}).

Sage. We can compute the matrix exponential in Sage as follows:

>>> M = matrix([[8,-10],[5,-7]])

$$\begin{pmatrix} (2 \ e^{(5 \ x)} - 1) \ e^{(-2 \ x)} & -2 \ (e^{(5 \ x)} - 1) \ e^{(-2 \ x)} \\ (e^{(5 \ x)} - 1) \ e^{(-2 \ x)} & -(e^{(5 \ x)} - 2) \ e^{(-2 \ x)} \end{pmatrix}$$

Note that this indeed matches the result of our computation.

[By the way, the variable x is pre-defined as a symbolic variable in Sage. That's why, unlike for n in the computation of M^n , we did not need to use x = var('x') first.]

Example 73. Suppose that $e^{Mx} = \frac{1}{10} \begin{bmatrix} e^x + 9e^{2x} & 3e^x - 3e^{2x} \\ 3e^x - 3e^{2x} & 9e^x + e^{2x} \end{bmatrix}$.

- (a) Without doing any computations, determine M^n .
- (b) What is M?
- (c) Without doing any computations, determine the eigenvalues and eigenvectors of M.
- (d) From these eigenvalues and eigenvectors, write down a simple fundamental matrix solution to y' = My.
- (e) From that fundamental matrix solution, how can we compute e^{Mx} ? (If we didn't know it already...)
- (f) Having computed e^{Mx} , what is a simple check that we can (should!) make?

Solution.

(a) Since e^x and e^{2x} correspond to eigenvalues 1 and 2, we just need to replace these by $1^n = 1$ and 2^n :

$$M^{n} = \frac{1}{10} \begin{bmatrix} 1 + 9 \cdot 2^{n} & 3 - 3 \cdot 2^{n} \\ 3 - 3 \cdot 2^{n} & 9 + 2^{n} \end{bmatrix}$$

- (b) We can simply set n = 1 in our formula for M^n , to get $M = \frac{1}{10} \begin{bmatrix} 19 & -3 \\ -3 & 11 \end{bmatrix}$.
- (c) The eigenvalues are 1 and 2 (because e^{Mx} contains the exponentials e^x and e^{2x}). Looking at the coefficients of e^x in the first column of e^{Mx}, we see that [1] 3] is a 1-eigenvector. [We can also look the second column of e^{Mx}, to obtain [3] 9] which is a multiple and thus equivalent.] Likewise, we find that [9] -3] or, equivalently, [-3] 1] is a 2-eigenvector. Comment. For the above to make sense, we need to keep in mind that, associated to a λ-eigenvector v,

we have the corresponding solution $y(x) = ve^{\lambda x}$ of the DE y' = My. On the other hand, the columns of e^{Mx} are solutions to that DE and, therefore, must be linear combinations of these $ve^{\lambda x}$.

(d) From the eigenvalues and eigenvectors, we know that $\begin{bmatrix} 1\\3 \end{bmatrix} e^x$ and $\begin{bmatrix} -3\\1 \end{bmatrix} e^{2x}$ are solutions (and that the general solutions consists of the linear combinations of these two).

Selecting these as the columns, we obtain the fundamental matrix solution $\Phi(x) = \begin{bmatrix} e^x & -3e^{2x} \\ 3e^x & e^{2x} \end{bmatrix}$.

Comment. The fundamental refers to the fact that the columns combine to the general solution. The matrix solution means that $\Phi(x)$ itself satisfies the DE: namely, we have $\Phi' = M\Phi$. That this is the case is a consequence of matrix multiplication (namely, say, the second column of $M\Phi$ is defined to be M times the second column of Φ ; but that column is a vector solution and therefore solves the DE).

(e) We can compute e^{Mx} as $e^{Mx} = \Phi(x)\Phi(0)^{-1}$.

If
$$\Phi(x) = \begin{bmatrix} e^x & -3e^{2x} \\ 3e^x & e^{2x} \end{bmatrix}$$
, then $\Phi(0) = \begin{bmatrix} 1 & -3 \\ 3 & 1 \end{bmatrix}$ and, hence, $\Phi(0)^{-1} = \frac{1}{10} \begin{bmatrix} 1 & 3 \\ -3 & 1 \end{bmatrix}$. It follows that $e^{Mx} = \Phi(x)\Phi(0)^{-1} = \begin{bmatrix} e^x & -3e^{2x} \\ 3e^x & e^{2x} \end{bmatrix} \frac{1}{10} \begin{bmatrix} 1 & 3 \\ -3 & 1 \end{bmatrix} = \frac{1}{10} \begin{bmatrix} e^x + 9e^{2x} & 3e^x - 3e^{2x} \\ 3e^x - 3e^{2x} & 9e^x + e^{2x} \end{bmatrix}$.

(f) We can check that e^{Mx} equals the identity matrix if we set x = 0:

$$\frac{1}{10} \begin{vmatrix} e^x + 9e^{2x} & 3e^x - 3e^{2x} \\ 3e^x - 3e^{2x} & 9e^x + e^{2x} \end{vmatrix} \xrightarrow{x=0} \frac{1}{10} \begin{bmatrix} 1+9 & 3-3 \\ 3-3 & 9+1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

This check does not require much effort and can even be done in our head while writing down e^{Mx} . There is really no excuse for not doing it!

Example 74. (homework) Let $M = \begin{bmatrix} -1 & 6 \\ -1 & 4 \end{bmatrix}$.

- (a) Determine the general solution to y' = My.
- (b) Determine a fundamental matrix solution to y' = My.
- (c) Compute e^{Mx} .
- (d) Solve the initial value problem $\mathbf{y}' = M\mathbf{y}$ with $\mathbf{y}(0) = \begin{vmatrix} 1 \\ 1 \end{vmatrix}$.
- (e) Compute M^n .
- (f) Solve $\boldsymbol{a}_{n+1} = M\boldsymbol{a}_n$ with $\boldsymbol{a}_0 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$.

Solution.

(a) We determine the eigenvectors of M. The characteristic polynomial is:

 $det(M - \lambda I) = det\left(\begin{bmatrix} -1 - \lambda & 6 \\ -1 & 4 - \lambda \end{bmatrix} \right) = (-1 - \lambda)(4 - \lambda) + 6 = \lambda^2 - 3\lambda + 2 = (\lambda - 1)(\lambda - 2)$ Hence, the eigenvalues are $\lambda = 1$ and $\lambda = 2$.

- $\lambda = 1$: Solving $\begin{bmatrix} -2 & 6 \\ -1 & 3 \end{bmatrix} \boldsymbol{v} = \boldsymbol{0}$, we find that $\boldsymbol{v} = \begin{bmatrix} 3 \\ 1 \end{bmatrix}$ is an eigenvector for $\lambda = 1$.
- $\lambda = 2$: Solving $\begin{bmatrix} -3 & 6 \\ -1 & 2 \end{bmatrix} \boldsymbol{v} = \boldsymbol{0}$, we find that $\boldsymbol{v} = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$ is an eigenvector for $\lambda = 2$.

Hence, the general solution is $C_1 \begin{bmatrix} 3\\1 \end{bmatrix} e^x + C_2 \begin{bmatrix} 2\\1 \end{bmatrix} e^{2x}$.

- (b) The corresponding fundamental matrix solution is $\Phi = \begin{bmatrix} 3e^x & 2e^{2x} \\ e^x & e^{2x} \end{bmatrix}$.
- (c) Note that $\Phi(0) = \begin{bmatrix} 3 & 2 \\ 1 & 1 \end{bmatrix}$, so that $\Phi(0)^{-1} = \begin{bmatrix} 1 & -2 \\ -1 & 3 \end{bmatrix}$. It follows that

$$e^{Mx} = \Phi(x)\Phi(0)^{-1} = \begin{bmatrix} 3e^x & 2e^{2x} \\ e^x & e^{2x} \end{bmatrix} \begin{bmatrix} 1 & -2 \\ -1 & 3 \end{bmatrix} = \begin{bmatrix} 3e^x - 2e^{2x} & -6e^x + 6e^{2x} \\ e^x - e^{2x} & -2e^x + 3e^{2x} \end{bmatrix}.$$

(d) The solution to the IVP is $\boldsymbol{y}(x) = e^{Mx} \begin{bmatrix} 1\\1 \end{bmatrix} = \begin{bmatrix} 3e^x - 2e^{2x} & -6e^x + 6e^{2x} \\ e^x - e^{2x} & -2e^x + 3e^{2x} \end{bmatrix} \begin{bmatrix} 1\\1 \end{bmatrix} = \begin{bmatrix} -3e^x + 4e^{2x} \\ -e^x + 2e^{2x} \end{bmatrix}$. Note. If we hadn't already computed e^{Mx} , we would use the general solution and solve for the appropriate

values of C_1 and C_2 . Do it that way as well! (e) From the first part, it follows that $a_{n+1} = Ma_n$ has general solution $C_1 \begin{bmatrix} 3\\1 \end{bmatrix} + C_2 \begin{bmatrix} 2\\1 \end{bmatrix} 2^n$.

(Note that $1^n = 1$.) The corresponding fundamental matrix solution is $\Phi_n = \begin{bmatrix} 3 & 2 \cdot 2^n \\ 1 & 2^n \end{bmatrix}$. As above, $\Phi_0 = \begin{bmatrix} 3 & 2 \\ 1 & 1 \end{bmatrix}$, so that $\Phi(0)^{-1} = \begin{bmatrix} 1 & -2 \\ -1 & 3 \end{bmatrix}$ and

$$M^{n} = \Phi_{n} \Phi_{0}^{-1} = \begin{bmatrix} 3 & 2 \cdot 2^{n} \\ 1 & 2^{n} \end{bmatrix} \begin{bmatrix} 1 & -2 \\ -1 & 3 \end{bmatrix} = \begin{bmatrix} 3 - 2 \cdot 2^{n} & -6 + 6 \cdot 2^{n} \\ 1 - 2^{n} & -2 + 3 \cdot 2^{n} \end{bmatrix}$$

Important. Compare with our computation for e^{Mx} . Can you see how this was basically the same computation? Write down M^n directly from e^{Mx} .

(f) The (unique) solution is $a_n = M^n \begin{bmatrix} 1\\1 \end{bmatrix} = \begin{bmatrix} 3-2\cdot 2^n & -6+6\cdot 2^n\\1-2^n & -2+3\cdot 2^n \end{bmatrix} \begin{bmatrix} 1\\1 \end{bmatrix} = \begin{bmatrix} -3+4\cdot 2^n\\-1+2\cdot 2^n \end{bmatrix}$. Again, compare with the earlier IVP!