Example 59. (review) Consider the sequence a_{n} defined by $a_{n+2}=4 a_{n}-3 a_{n+1}$ and $a_{0}=1$, $a_{1}=2$. Determine $\lim _{n \rightarrow \infty} \frac{a_{n+1}}{a_{n}}$.
Solution. The recursion can be written as $p(N) a_{n}=0$ where $p(N)=N^{2}+3 N-4$ has roots $1,-4$. Hence, the general solution is $a_{n}=C_{1}+C_{2} \cdot(-4)^{n}$. We can see that both roots have to be involved in the solution (in other words, $C_{1} \neq 0$ and $C_{2} \neq 0$) because $a_{n}=C_{1}$ and $a_{n}=C_{2} \cdot(-4)^{n}$ are not consistent with the initial conditions. We conclude that $\lim _{n \rightarrow \infty} \frac{a_{n+1}}{a_{n}}=-4$ (because $|-4|>|1|$).

Systems of recurrence equations

Example 60. Write the (second-order) RE $a_{n+2}=4 a_{n}-3 a_{n+1}$, with $a_{0}=1, a_{1}=2$, as a system of (first-order) recurrences.
Solution. (long form) Write $b_{n}=a_{n+1}$.
Then, $a_{n+2}=4 a_{n}-3 a_{n+1}$ translates into the first-order system $\left\{\begin{array}{l}a_{n+1}=b_{n} \\ b_{n+1}=4 a_{n}-3 b_{n}\end{array}\right.$.
Let $\boldsymbol{a}_{n}=\left[\begin{array}{l}a_{n} \\ b_{n}\end{array}\right]$. Then, in matrix form, the RE is $\boldsymbol{a}_{n+1}=\left[\begin{array}{cc}0 & 1 \\ 4 & -3\end{array}\right] \boldsymbol{a}_{n}$, with $\boldsymbol{a}_{0}=\left[\begin{array}{l}1 \\ 2\end{array}\right]$.
Solution. (short form) Equivalently, write $\boldsymbol{a}_{n}=\left[\begin{array}{c}a_{n} \\ a_{n+1}\end{array}\right]$. Then we obtain the system

$$
\boldsymbol{a}_{n+1}=\left[\begin{array}{c}
a_{n+1} \\
a_{n+2}
\end{array}\right]=\left[\begin{array}{c}
a_{n+1} \\
4 a_{n}-3 a_{n+1}
\end{array}\right]=\left[\begin{array}{cc}
0 & 1 \\
4 & -3
\end{array}\right]\left[\begin{array}{c}
a_{n} \\
a_{n+1}
\end{array}\right]=\left[\begin{array}{cc}
0 & 1 \\
4 & -3
\end{array}\right] \boldsymbol{a}_{n}, \quad \boldsymbol{a}_{0}=\left[\begin{array}{l}
1 \\
2
\end{array}\right] .
$$

Comment. It follows that $\boldsymbol{a}_{n}=\left[\begin{array}{cc}0 & 1 \\ 4 & -3\end{array}\right]^{n} \boldsymbol{a}_{0}=\left[\begin{array}{cc}0 & 1 \\ 4 & -3\end{array}\right]^{n}\left[\begin{array}{l}1 \\ 2\end{array}\right]$. Solving (systems of) REs is equivalent to computing powers of matrices!
Comment. We could also write $\boldsymbol{a}_{n}=\left[\begin{array}{c}a_{n+1} \\ a_{n}\end{array}\right]$ (with the order of the entries reversed). In that case, the system is

$$
\boldsymbol{a}_{n+1}=\left[\begin{array}{l}
a_{n+2} \\
a_{n+1}
\end{array}\right]=\left[\begin{array}{c}
4 a_{n}-3 a_{n+1} \\
a_{n+1}
\end{array}\right]=\left[\begin{array}{cc}
-3 & 4 \\
1 & 0
\end{array}\right]\left[\begin{array}{c}
a_{n+1} \\
a_{n}
\end{array}\right]=\left[\begin{array}{cc}
-3 & 4 \\
1 & 0
\end{array}\right] \boldsymbol{a}_{n}, \quad \boldsymbol{a}_{0}=\left[\begin{array}{l}
2 \\
1
\end{array}\right]
$$

Comment. Recall that the characteristic polynomial of a matrix M is $\operatorname{det}(M-\lambda I)$. Compute the characteristic polynomial of both $M=\left[\begin{array}{cc}0 & 1 \\ 4 & -3\end{array}\right]$ and $M=\left[\begin{array}{cc}-3 & 4 \\ 1 & 0\end{array}\right]$. In both cases, we get $\lambda^{2}+3 \lambda-4$, which matches the polynomial $p(N)$ (also called characteristic polynomial!) in the previous example. This will always happen and explains why both are referred to as the characteristic polynomial.

Example 61. Write $a_{n+3}-4 a_{n+2}+a_{n+1}+6 a_{n}=0$ as a system of (first-order) recurrences. Solution. Write $\boldsymbol{a}_{n}=\left[\begin{array}{c}a_{n} \\ a_{n+1} \\ a_{n+2}\end{array}\right]$. Then we obtain the system

$$
\boldsymbol{a}_{n+1}=\left[\begin{array}{c}
a_{n+1} \\
a_{n+2} \\
a_{n+3}
\end{array}\right]=\left[\begin{array}{c}
a_{n+1} \\
a_{n+2} \\
4 a_{n+2}-a_{n+1}-6 a_{n}
\end{array}\right]=\left[\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 1 \\
-6 & -1 & 4
\end{array}\right]\left[\begin{array}{c}
a_{n} \\
a_{n+1} \\
a_{n+2}
\end{array}\right]=\left[\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 1 \\
-6 & -1 & 4
\end{array}\right] \boldsymbol{a}_{n}
$$

In summary, the RE in matrix form is $\boldsymbol{a}_{n+1}=M \boldsymbol{a}_{n}$ with M the matrix above. Important comment. Consequently, $\boldsymbol{a}_{n}=M^{n} \boldsymbol{a}_{0}$.
(systems of REs) The unique solution to $\boldsymbol{a}_{n+1}=M \boldsymbol{a}_{n}, \boldsymbol{a}_{0}=\boldsymbol{c}$ is $\boldsymbol{a}_{n}=M^{n} \boldsymbol{c}$.
We will say that M^{n} is the fundamental matrix solution to $\boldsymbol{a}_{n+1}=M \boldsymbol{a}_{n}$ with $\boldsymbol{a}_{0}=I$ (the identity matrix). Comment. Note that $M^{n} \boldsymbol{c}$ is a linear combination of the columns of M^{n}. In other words, each column of M^{n} is a solution to $\boldsymbol{a}_{n+1}=M \boldsymbol{a}_{n}$ and $M^{n} \boldsymbol{c}$ is the general solution.
In general, we say that a matrix Φ_{n} is a matrix solution to $\boldsymbol{a}_{n+1}=M \boldsymbol{a}_{n}$ if $\Phi_{n+1}=M \Phi_{n}$. Φ_{n} being a matrix solution is equivalent to each column of Φ_{n} being a normal (vector) solution. If the general solution of $\boldsymbol{a}_{n+1}=M \boldsymbol{a}_{n}$ can be obtained as the linear combination of the columns of Φ_{n}, then Φ_{n} is a fundamental matrix solution. Above, we observed that $\Phi_{n}=M^{n}$ is a special fundamental matrix solution.
If this is a bit too abstract at this point, have a look at Example 62 below.

However, at this point, it remains to figure out how to actually compute M^{n}. We will actually proceed the other way around: we construct the general solution of $\boldsymbol{a}_{n+1}=M a_{n}$ (see the box below) and then we use that to determine M^{n} from that.

To solve $\boldsymbol{a}_{n+1}=M \boldsymbol{a}_{n}$, determine the eigenvectors of M.

- Each λ-eigenvector \boldsymbol{v} provides a solution: $\boldsymbol{a}_{n}=\boldsymbol{v} \lambda^{n}$
[assuming that $\lambda \neq 0$]
- If there are enough eigenvectors, these combine to the general solution.

Why? If $\boldsymbol{a}_{n}=\boldsymbol{v} \lambda^{n}$ for a λ-eigenvector \boldsymbol{v}, then $\boldsymbol{a}_{n+1}=\boldsymbol{v} \lambda^{n+1}$ and $M \boldsymbol{a}_{n}=M \boldsymbol{v} \lambda^{n}=\lambda \boldsymbol{v} \cdot \lambda^{n}=\boldsymbol{v} \lambda^{n+1}$.
Where is this coming from? When solving single linear recurrences, we found that the basic solutions are of the form $c r^{n}$ where $r \neq 0$ is a root of the characteristic polynomials. To solve $\boldsymbol{a}_{n+1}=M \boldsymbol{a}_{n}$, it is therefore natural to look for solutions of the form $\boldsymbol{a}_{n}=\boldsymbol{c} r^{n}$ (where $\boldsymbol{c}=\left[\begin{array}{l}c_{1} \\ c_{2}\end{array}\right]$). Note that $\boldsymbol{a}_{n+1}=\boldsymbol{c} r^{n+1}=r \boldsymbol{a}_{n}$.
Plugging into $\boldsymbol{a}_{n+1}=M \boldsymbol{a}_{n}$ we find $\boldsymbol{c} r^{n+1}=M \boldsymbol{c} r^{n}$.
Cancelling r^{n} (just a nonzero number!), this simplifies to $r \boldsymbol{c}=M \boldsymbol{c}$.
In other words, $\boldsymbol{a}_{n}=\boldsymbol{c} r^{n}$ is a solution if and only if \boldsymbol{c} is an r-eigenvector of M.

Comment. If there are not enough eigenvectors, then we know what to do as well (at least in principle): instead of looking only for solutions of the type $\boldsymbol{a}_{n}=\boldsymbol{v} \lambda^{n}$, we also need to look for solutions of the type $\boldsymbol{a}_{n}=(\boldsymbol{v} n+\boldsymbol{w}) \lambda^{n}$. Note that this can only happen if an eigenvalue is a repeated root of the characteristic polynomial.

Example 62. Let $M=\left[\begin{array}{cc}8 & -10 \\ 5 & -7\end{array}\right]$.
(a) Determine the general solution to $\boldsymbol{a}_{n+1}=M \boldsymbol{a}_{n}$.
(b) Determine a fundamental matrix solution to $\boldsymbol{a}_{n+1}=M \boldsymbol{a}_{n}$.
(c) Compute M^{n}.

Solution.

(a) Recall that each λ-eigenvector \boldsymbol{v} of M provides us with a solution: $\boldsymbol{a}_{n}=\boldsymbol{v} \lambda^{n}$

We computed in Example 57 that $\left[\begin{array}{l}2 \\ 1\end{array}\right]$ is an eigenvector for $\lambda=3$, and $\left[\begin{array}{l}1 \\ 1\end{array}\right]$ is an eigenvector for $\lambda=-2$.
Hence, the general solution is $C_{1}\left[\begin{array}{l}2 \\ 1\end{array}\right] 3^{n}+C_{2}\left[\begin{array}{l}1 \\ 1\end{array}\right](-2)^{n}$.
(b) Note that we can write the general solution as
$\boldsymbol{a}_{n}=C_{1}\left[\begin{array}{l}2 \\ 1\end{array}\right] 3^{n}+C_{2}\left[\begin{array}{l}1 \\ 1\end{array}\right](-2)^{n}=\left[\begin{array}{cc}2 \cdot 3^{n} & (-2)^{n} \\ 3^{n} & (-2)^{n}\end{array}\right]\left[\begin{array}{l}C_{1} \\ C_{2}\end{array}\right]$.
We call $\Phi_{n}=\left[\begin{array}{cc}2 \cdot 3^{n} & (-2)^{n} \\ 3^{n} & (-2)^{n}\end{array}\right]$ the corresponding fundamental matrix (solution).
Note that our general solution is precisely $\Phi_{n} c$ with $c=\left[\begin{array}{l}C_{1} \\ C_{2}\end{array}\right]$.
Observations.
(a) The columns of Φ_{n} are (independent) solutions of the system.
(b) Φ_{n} solves the RE itself: $\Phi_{n+1}=M \Phi_{n}$.
[Spell this out in this example! That Φ_{n} solves the RE follows from the definition of matrix multiplication.]
(c) It follows that $\Phi_{n}=M^{n} \Phi_{0}$. Equivalently, $\Phi_{n} \Phi_{0}^{-1}=M^{n}$. (See next part!)
(c) Note that $\Phi_{0}=\left[\begin{array}{ll}2 & 1 \\ 1 & 1\end{array}\right]$, so that $\Phi_{0}^{-1}=\left[\begin{array}{cc}1 & -1 \\ -1 & 2\end{array}\right]$. It follows that

$$
M^{n}=\Phi_{n} \Phi_{0}^{-1}=\left[\begin{array}{cc}
2 \cdot 3^{n} & (-2)^{n} \\
3^{n} & (-2)^{n}
\end{array}\right]\left[\begin{array}{cc}
1 & -1 \\
-1 & 2
\end{array}\right]=\left[\begin{array}{cc}
2 \cdot 3^{n}-(-2)^{n} & -2 \cdot 3^{n}+2(-2)^{n} \\
3^{n}-(-2)^{n} & -3^{n}+2(-2)^{n}
\end{array}\right] .
$$

Check. Let us verify the formula for M^{n} in the cases $n=0$ and $n=1$:

$$
\begin{aligned}
& M^{0}=\left[\begin{array}{ll}
2-1 & -2+2 \\
1-1 & -1+2
\end{array}\right]=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] \\
& M^{1}=\left[\begin{array}{cc}
2 \cdot 3-(-2) & -2 \cdot 3+2(-2) \\
3-(-2) & -3+2(-2)
\end{array}\right]=\left[\begin{array}{cc}
8 & -10 \\
5 & -7
\end{array}\right]
\end{aligned}
$$

We just saw that being able to compute matrix powers is equivalent to solving systems of recurrences. Indeed, we can use this fact to compute matrix powers.

> (a way to compute powers of a matrix \boldsymbol{M})
> Compute a fundamental matrix solution Φ_{n} of $\boldsymbol{a}_{n+1}=M \boldsymbol{a}_{n}$.
> Then $M^{n}=\Phi_{n} \Phi_{0}^{-1}$.

If you have taken linear algebra classes, you may have learned that matrix powers M^{n} can be computed by diagonalizing the matrix M. The latter hinges on computing eigenvalues and eigenvectors of M as well. Compare the two approaches!

