Notes for Lecture 9 Wed, 9/13/2023

Example 47. (cont’d) Let the sequence a,, be defined by a,,+2=a,,+1+6a, and ap=1, a; =8.
(a) Determine the first few terms of the sequence.

(b) Find a formula for a,,.

(c) Determine lim antl

n—oo Ap

Solution.
(a) ag=a1+6ap=14, ag=ag+ 6a; =62, ag =146, ...

(b) The recursion can be written as p(N)a,, =0 where p(N) = N2 — N — 6 has roots 3, —2.
Hence, a, = C1 3™ 4+ C2 (—2)™ and we only need to figure out the two unknowns C1, Cs. We can do
that using the two initial conditions: ag=C1+ Cy=1, a1 =3C1 —2C> =8.
Solving, we find C1 =2 and Cy = —1 so that, in conclusion, a, =2-3" — (—=2)".
Comment. Such a formula is sometimes called a Binet-like formula (because it is of the same kind as
the Binet formula for the Fibonacci numbers that we can derive in the same manner).

. a
(c) It follows from our formula that lim —2+t1
n—oo QOn

=3 (because |3| > |—2| so that 3" dominates (—2)™).

To see this, we need to realize that, for large n, 3™ is much larger than (—2)" so that we have a,, ~2-3™
Ant1 2.3n+1 _

~ T2 3n

Alternatively, to be very precise, we can observe that (by dividing each term by 3")

when n is large. Hence,

2 n
an+1 9.3n+1 _ (72)n+1 B 2'3+2<*§)

as n—oo 2-34+0
= = - RN 22y
(679 2'3”7(72)’"’ 2.17<72> 2:-1-0

=3.

Example 48. (“warmup”) Find the general solution to the recursion a2 =4a,+1 — 4a,,.
Solution. The recursion can be written as p(N)a, =0 where p(N) = N? — 4N + 4 has roots 2, 2.
So a solution is 2™ and, from our discussion of DEs, it is probably not surprising that a second solution is n - 2™.
Hence, the general solution is a,, =C1-2"+ Ca-n-2"=(C1 4+ Can) - 2™.
Comment. This is analogous to (D — 2)?y’ =0 having the general solution y(x) = (C; + Caz)e?*.
Check! Let's check that a,, =n - 2™ indeed satisfies the recursion (N — 2)2a,, =0.
(N=2)n-2"=(n+1)2"T!t —2n .27 =27%1 5o that (N —2)?n-2"= (N —2)2"T1=0.

Combined, we obtain the following analog of Theorem 24 for recurrence equations (RE):

Comment. Sequences that are solutions to such recurrences are called constant recursive or C-finite.

Theorem 49. Consider the homogeneous linear RE with constant coefficients p(N)a,, =0.

e If 7 is a root of the characteristic polynomial and if k is its multiplicity, then %k (inde-
pendent) solutions of the RE are given by n/r™ for j=0,1,....k — 1.

e Combining these solutions for all roots, gives the general solution.

Moreover. If r is the sole largest root by absolute value among the roots contributing to a,, then a, ~Cr"™
(if 7 is not repeated—uwhat if it is?) for large n. In particular, it follows that

. a
lim Zntl o

n—oo Qn

Advanced comment. Things can get weird if there are several roots of the same absolute value. Consider, for

instance, the case a,, = 2™+ (—2)"™. Can you see that, in this case, the limit lim,,_, o a;“ doesn’t even exist?

n
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Example 50. Find the general solution to the recursion a,, 13 =2a,4+2+ ani1— 2an,.

Solution. The recursion can be written as p(N)a, =0 where p(N) = N3 —2N2 — N + 2 has roots 2, 1, —1.
(Here, we used some help from a computer algebra system to find the roots.)

Hence, the general solution is a,, =C1 - 2"+ Co+ C3- (—1)™.

Example 51. Find the general solution to the recursion a,,4+3=3a,+2 — 4a,.

Solution. The recursion can be written as p(NN)a,, =0 where p(N) = N3 —3N?2 +4 has roots 2,2, —1. (Again,
we used some help from a computer algebra system to find the roots.)

Hence, the general solution is a,, = (C1+ Can) - 2"+ C3- (—1)™.

. s 1 145 n 1—5 n
Theorem 52. (Binet’s formula) Fn_%K 5 > —<T> ]

Proof. The recursion Fy, 11 = F,, + F,,_1 can be written as p(N)a,, =0 where p(N) = N? — N — 1 has roots

_1_
277

B

)q:%% 1.618, A ~—0.618.

Hence, F,, = C1- AT + C3- A} and we only need to figure out the two unknowns C7, C. We can do that using

| — !
the two initial conditions: Fp=C1+Cy=0, F1 =C1 - ! _,_2\/3 +Cy- ! 2\/5 =1.
. . 1 1 . . 1 .
Solving, we find C7 =7 and Cy = ~ 5 so that, in conclusion, Fn:ﬁ()ff — A5), as claimed. O

1 n n _ 1 14++/5\"
Comment. For large n, Fn%%)\l (because A5 becomes very small). In fact, F}, =round 7 < ) .

2

Back to the quotient of Fibonacci numbers. In particular, because \7 dominates A5, it is now transparent

that the ratios F"fl approach A1 :%% 1.618. To be precise, note that
L n+1l _ yn+1 A2\
Fn+1: \/3()\1 Ag ):)\TIL+1_)\721+1:)\1—)\2(>\—1) n—oo M:)\l
n n n *
Fn %(Xf_ ) AT — A5 1_(;_?) 1-0

In fact, it follows from Ao < O that the ratios % approach \p in the alternating fashion that we observed
numerically earlier. Can you see that? "

Example 53. Consider the sequence a,, defined by a, 2 = 4a,+1 + 9a, and ag =1, a; = 2.

. . a 1
Determine lim —2*1

n—oo Ap

4 V52 5 6056,

Solution. The recursion can be written as p(N)a,, =0 where p(N) = N2 — 4N — 9 has roots 5

—1.6056. Both roots have to be involved in the solution in order to get integer values.
We conclude that lim 2%Ht1 =24 /T3 ~5.6056 (because |5.6056| > |—1.6056]).

n—oo Qan

Example 54. (extra) Consider the sequence a,, defined by a,,12 = 2a,,41 + 4a,, and ay = 0,

) . a
a1 =1. Determine lim ntl

n—oo Ap

First few terms of sequence. 0,1, 2,8, 24, 80, 256, 832, ...

These are actually related to Fibonacci numbers. Indeed, a,, = 2™~ 'F},,. Can you prove this directly from the
recursions? Alternatively, this follows from comparing the Binet-like formulas.

Solution. Proceeding as in the previous example, we find lim nil ++/5 ~ 3.23607.

n—oo Qan
Comment. With just a little more work, we find the Binet-like formula a,, = a+ \/3)2\_/3(1 — V%) .
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