Example 47. (cont'd) Let the sequence a_{n} be defined by $a_{n+2}=a_{n+1}+6 a_{n}$ and $a_{0}=1, a_{1}=8$.
(a) Determine the first few terms of the sequence.
(b) Find a formula for a_{n}.
(c) Determine $\lim _{n \rightarrow \infty} \frac{a_{n+1}}{a_{n}}$.

Solution.
(a) $a_{2}=a_{1}+6 a_{0}=14, a_{3}=a_{2}+6 a_{1}=62, a_{4}=146, \ldots$
(b) The recursion can be written as $p(N) a_{n}=0$ where $p(N)=N^{2}-N-6$ has roots $3,-2$.

Hence, $a_{n}=C_{1} 3^{n}+C_{2}(-2)^{n}$ and we only need to figure out the two unknowns C_{1}, C_{2}. We can do that using the two initial conditions: $a_{0}=C_{1}+C_{2}=1, a_{1}=3 C_{1}-2 C_{2}=8$.
Solving, we find $C_{1}=2$ and $C_{2}=-1$ so that, in conclusion, $a_{n}=2 \cdot 3^{n}-(-2)^{n}$.
Comment. Such a formula is sometimes called a Binet-like formula (because it is of the same kind as the Binet formula for the Fibonacci numbers that we can derive in the same manner).
(c) It follows from our formula that $\lim _{n \rightarrow \infty} \frac{a_{n+1}}{a_{n}}=3$ (because $|3|>|-2|$ so that 3^{n} dominates $(-2)^{n}$).

To see this, we need to realize that, for large $n, 3^{n}$ is much larger than $(-2)^{n}$ so that we have $a_{n} \approx 2 \cdot 3^{n}$ when n is large. Hence, $\frac{a_{n+1}}{a_{n}} \approx \frac{2 \cdot 3^{n+1}}{2 \cdot 3^{n}}=3$.
Alternatively, to be very precise, we can observe that (by dividing each term by 3^{n})

$$
\frac{a_{n+1}}{a_{n}}=\frac{2 \cdot 3^{n+1}-(-2)^{n+1}}{2 \cdot 3^{n}-(-2)^{n}}=\frac{2 \cdot 3+2\left(-\frac{2}{3}\right)^{n}}{2 \cdot 1-\left(-\frac{2}{3}\right)^{n}} \quad \text { as } n \rightarrow \infty \quad \frac{2 \cdot 3+0}{2 \cdot 1-0}=3 .
$$

Example 48. ("warmup") Find the general solution to the recursion $a_{n+2}=4 a_{n+1}-4 a_{n}$.
Solution. The recursion can be written as $p(N) a_{n}=0$ where $p(N)=N^{2}-4 N+4$ has roots 2,2 .
So a solution is 2^{n} and, from our discussion of DEs, it is probably not surprising that a second solution is $n \cdot 2^{n}$. Hence, the general solution is $a_{n}=C_{1} \cdot 2^{n}+C_{2} \cdot n \cdot 2^{n}=\left(C_{1}+C_{2} n\right) \cdot 2^{n}$.
Comment. This is analogous to $(D-2)^{2} y^{\prime}=0$ having the general solution $y(x)=\left(C_{1}+C_{2} x\right) e^{2 x}$.
Check! Let's check that $a_{n}=n \cdot 2^{n}$ indeed satisfies the recursion $(N-2)^{2} a_{n}=0$.
$(N-2) n \cdot 2^{n}=(n+1) 2^{n+1}-2 n \cdot 2^{n}=2^{n+1}$, so that $(N-2)^{2} n \cdot 2^{n}=(N-2) 2^{n+1}=0$.
Combined, we obtain the following analog of Theorem 24 for recurrence equations (RE):
Comment. Sequences that are solutions to such recurrences are called constant recursive or C-finite.
Theorem 49. Consider the homogeneous linear RE with constant coefficients $p(N) a_{n}=0$.

- If r is a root of the characteristic polynomial and if k is its multiplicity, then k (independent) solutions of the RE are given by $n^{j} r^{n}$ for $j=0,1, \ldots, k-1$.
- Combining these solutions for all roots, gives the general solution.

Moreover. If r is the sole largest root by absolute value among the roots contributing to a_{n}, then $a_{n} \approx C r^{n}$ (if r is not repeated-what if it is?) for large n. In particular, it follows that

$$
\lim _{n \rightarrow \infty} \frac{a_{n+1}}{a_{n}}=r .
$$

Advanced comment. Things can get weird if there are several roots of the same absolute value. Consider, for instance, the case $a_{n}=2^{n}+(-2)^{n}$. Can you see that, in this case, the limit $\lim _{n \rightarrow \infty} \frac{a_{n+1}}{a_{n}}$ doesn't even exist?

Example 50. Find the general solution to the recursion $a_{n+3}=2 a_{n+2}+a_{n+1}-2 a_{n}$.
Solution. The recursion can be written as $p(N) a_{n}=0$ where $p(N)=N^{3}-2 N^{2}-N+2$ has roots $2,1,-1$. (Here, we used some help from a computer algebra system to find the roots.)
Hence, the general solution is $a_{n}=C_{1} \cdot 2^{n}+C_{2}+C_{3} \cdot(-1)^{n}$.
Example 51. Find the general solution to the recursion $a_{n+3}=3 a_{n+2}-4 a_{n}$.
Solution. The recursion can be written as $p(N) a_{n}=0$ where $p(N)=N^{3}-3 N^{2}+4$ has roots $2,2,-1$. (Again, we used some help from a computer algebra system to find the roots.)
Hence, the general solution is $a_{n}=\left(C_{1}+C_{2} n\right) \cdot 2^{n}+C_{3} \cdot(-1)^{n}$.
Theorem 52. (Binet's formula) $F_{n}=\frac{1}{\sqrt{5}}\left[\left(\frac{1+\sqrt{5}}{2}\right)^{n}-\left(\frac{1-\sqrt{5}}{2}\right)^{n}\right]$
Proof. The recursion $F_{n+1}=F_{n}+F_{n-1}$ can be written as $p(N) a_{n}=0$ where $p(N)=N^{2}-N-1$ has roots

$$
\lambda_{1}=\frac{1+\sqrt{5}}{2} \approx 1.618, \quad \lambda_{2}=\frac{1-\sqrt{5}}{2} \approx-0.618 .
$$

Hence, $F_{n}=C_{1} \cdot \lambda_{1}^{n}+C_{2} \cdot \lambda_{2}^{n}$ and we only need to figure out the two unknowns C_{1}, C_{2}. We can do that using the two initial conditions: $F_{0}=C_{1}+C_{2} \stackrel{!}{=} 0, F_{1}=C_{1} \cdot \frac{1+\sqrt{5}}{2}+C_{2} \cdot \frac{1-\sqrt{5}}{2} \stackrel{!}{=} 1$.
Solving, we find $C_{1}=\frac{1}{\sqrt{5}}$ and $C_{2}=-\frac{1}{\sqrt{5}}$ so that, in conclusion, $F_{n}=\frac{1}{\sqrt{5}}\left(\lambda_{1}^{n}-\lambda_{2}^{n}\right)$, as claimed.

Comment. For large $n, F_{n} \approx \frac{1}{\sqrt{5}} \lambda_{1}^{n}$ (because λ_{2}^{n} becomes very small). In fact, $F_{n}=\operatorname{round}\left(\frac{1}{\sqrt{5}}\left(\frac{1+\sqrt{5}}{2}\right)^{n}\right)$.
Back to the quotient of Fibonacci numbers. In particular, because λ_{1}^{n} dominates λ_{2}^{n}, it is now transparent that the ratios $\frac{F_{n+1}}{F_{n}}$ approach $\lambda_{1}=\frac{1+\sqrt{5}}{2} \approx 1.618$. To be precise, note that

$$
\frac{F_{n+1}}{F_{n}}=\frac{\frac{1}{\sqrt{5}}\left(\lambda_{1}^{n+1}-\lambda_{2}^{n+1}\right)}{\frac{1}{\sqrt{5}}\left(\lambda_{1}^{n}-\lambda_{2}^{n}\right)}=\frac{\lambda_{1}^{n+1}-\lambda_{2}^{n+1}}{\lambda_{1}^{n}-\lambda_{2}^{n}}=\frac{\lambda_{1}-\lambda_{2}\left(\frac{\lambda_{2}}{\lambda_{1}}\right)^{n}}{1-\left(\frac{\lambda_{2}}{\lambda_{1}}\right)^{n}} \stackrel{n \rightarrow \infty}{\longrightarrow} \frac{\lambda_{1}-0}{1-0}=\lambda_{1} .
$$

In fact, it follows from $\lambda_{2}<0$ that the ratios $\frac{F_{n+1}}{F_{n}}$ approach λ_{1} in the alternating fashion that we observed numerically earlier. Can you see that?

Example 53. Consider the sequence a_{n} defined by $a_{n+2}=4 a_{n+1}+9 a_{n}$ and $a_{0}=1, a_{1}=2$. Determine $\lim _{n \rightarrow \infty} \frac{a_{n+1}}{a_{n}}$.
Solution. The recursion can be written as $p(N) a_{n}=0$ where $p(N)=N^{2}-4 N-9$ has roots $\frac{4 \pm \sqrt{52}}{2} \approx 5.6056$, -1.6056 . Both roots have to be involved in the solution in order to get integer values.
We conclude that $\lim _{n \rightarrow \infty} \frac{a_{n+1}}{a_{n}}=2+\sqrt{13} \approx 5.6056$ (because $|5.6056|>|-1.6056|$).
Example 54. (extra) Consider the sequence a_{n} defined by $a_{n+2}=2 a_{n+1}+4 a_{n}$ and $a_{0}=0$, $a_{1}=1$. Determine $\lim _{n \rightarrow \infty} \frac{a_{n+1}}{a_{n}}$.
First few terms of sequence. $0,1,2,8,24,80,256,832, \ldots$
These are actually related to Fibonacci numbers. Indeed, $a_{n}=2^{n-1} F_{n}$. Can you prove this directly from the recursions? Alternatively, this follows from comparing the Binet-like formulas.
Solution. Proceeding as in the previous example, we find $\lim _{n \rightarrow \infty} \frac{a_{n+1}}{a_{n}}=1+\sqrt{5} \approx 3.23607$.
Comment. With just a little more work, we find the Binet-like formula $a_{n}=\frac{(1+\sqrt{5})^{n}-(1-\sqrt{5})^{n}}{2 \sqrt{5}}$.

