Example 38. (review) What is the shape of a particular solution of $y^{\prime \prime}+4 y^{\prime}+4 y=4 e^{3 x} \sin (2 x)-$ $x \sin (x)$?
Solution. The "old" roots are $-2,-2$. The "new" roots are $3 \pm 2 i, \pm i, \pm i$.
Hence, there has to be a particular solution of the form
$y_{p}=C_{1} e^{3 x} \cos (2 x)+C_{2} e^{3 x} \sin (2 x)+\left(C_{3}+C_{4} x\right) \cos (x)+\left(C_{5}+C_{6} x\right) \sin (x)$.
Continuing to find a particular solution. To find the values of C_{1}, \ldots, C_{6}, we plug into the DE. But this final step is so boring that we don't go through it here. Computers (currently?) cannot afford to be as selective; mine obediently calculated: $y_{p}=-\frac{4}{841} e^{3 x}(20 \cos (2 x)-21 \sin (2 x))+\frac{1}{125}((-22+20 x) \cos (x)+(4-15 x) \sin (x))$

Sage

In practice, we are happy to let a machine do tedious computations. Let us see how to use the open-source computer algebra system Sage to do basic computations for us.
Sage is freely available at sagemath.org. Instead of installing it locally (it's huge!) we can conveniently use it in the cloud at cocalc.com from any browser.
[For basic computations, you can also simply use the textbox on our course website.]
Sage is built as a Python library, so any Python code is valid. For starters, we will use it as a fancy calculator.
Example 39. To solve the differential equation $y^{\prime \prime}+4 y^{\prime}+4 y=7 e^{-2 x}$, as we did in Example 34, we can use the following:

```
>>> x = var('x')
>>> y = function('y')(x)
>>> desolve(diff(y,x,2) + 4*diff(y,x) + 4*y == 7*exp(-2*x), y)
    \frac{7}{2}}\mp@subsup{x}{}{2}\mp@subsup{e}{}{(-2x)}+(\mp@subsup{K}{2}{}x+\mp@subsup{K}{1}{})\mp@subsup{e}{}{(-2x)
```

This confirms, as we had found, that the general solution is $y(x)=\left(C_{1}+C_{2} x+\frac{7}{2} x^{2}\right) e^{-2 x}$.
Example 40. Similarly, Sage can solve initial value problems such as $y^{\prime \prime}-y^{\prime}-2 y=0$ with initial conditions $y(0)=4, y^{\prime}(0)=5$.

```
>>> x = var('x')
>>> y = function('y')(x)
>>> desolve(diff(y,x,2) - diff(y,x) - 2*y == 0, y, ics=[0,4,5])
    3 e
```

This matches the (unique) solution $y(x)=3 e^{2 x}+e^{-x}$ that we derived in Example 22.

Example 41. We have been factoring differential operators like $D^{2}+4 D+4=(D+2)^{2}$.
Things become much more complicated when the coefficients are not constant!
For instance, the linear DE $y^{\prime \prime}+4 y^{\prime}+4 x y=0$ can be written as $L y=0$ with $L=D^{2}+4 D+4 x$. However, in general, such operators cannot be factored (unless we allow as coefficients functions in x that we are not familiar with). [On the other hand, any ordinary polynomial can be factored over the complex numbers.]
One indication that things become much more complicated is that x and D do not commute: $x D \neq D x$!!
Indeed, $(x D) f(x)=x f^{\prime}(x)$ while $(D x) f(x)=\frac{\mathrm{d}}{\mathrm{d} x}[x f(x)]=f(x)+x f^{\prime}(x)=(1+x D) f(x)$.
This computation shows that, in fact, $D x=x D+1$.
Review. Linear DEs are those that can be written as $L y=f(x)$ where L is a linear differential operator: namely,

$$
\begin{equation*}
L=p_{n}(x) D^{n}+p_{n-1}(x) D^{n-1}+\ldots+p_{1}(x) D+p_{0}(x) . \tag{1}
\end{equation*}
$$

Recall that the operators $x D$ and $D x$ are not the same: instead, $D x=x D+1$.
We say that an operator of the form (1) is in normal form.
For instance. $x D$ is in normal form, whereas $D x$ is not in normal form. It follows from the previous example tha the normal form of $D x$ is $x D+1$.

Example 42. Let $a=a(x)$ be some function.
(a) Write the operator $D a$ in normal form [normal form means as in (1)].
(b) Write the operator $D^{2} a$ in normal form.

Solution.
(a) $(D a) f(x)=\frac{\mathrm{d}}{\mathrm{d} x}[a(x) f(x)]=a^{\prime}(x) f(x)+a(x) f^{\prime}(x)=\left(a^{\prime}+a D\right) f(x)$ Hence, $D a=a D+a^{\prime}$.
(b) $\left(D^{2} a\right) f(x)=\frac{\mathrm{d}^{2}}{\mathrm{~d} x^{2}}[a(x) f(x)]=\frac{\mathrm{d}}{\mathrm{d} x}\left[a^{\prime}(x) f(x)+a(x) f^{\prime}(x)\right]=a^{\prime \prime}(x) f(x)+2 a^{\prime}(x) f^{\prime}(x)+a(x) f^{\prime \prime}(x)$ $=\left(a^{\prime \prime}+2 a^{\prime} D+a D^{2}\right) f(x)$
Hence, $D^{2} a=a D^{2}+2 a^{\prime} D+a^{\prime \prime}$.

