Notes for Lecture 6

Example 29. (review) Find the general solution of y''' - 3y' + 2y = 0. Solution. The characteristic polynomial $p(D) = D^3 - 3D + 2 = (D-1)^2(D+2)$ has roots 1, 1, -2. By Theorem 24, the general solution is $y(x) = (C_1 + C_2 x)e^x + C_2 e^{-2x}$.

Inhomogeneous linear DEs with constant coefficients

Example 30. ("warmup") Find the general solution of y'' + 4y = 12x.

Solution. Here, $p(D) = D^2 + 4$, which has roots $\pm 2i$.

Hence, the general solution is $y(x) = y_p(x) + C_1 \cos(2x) + C_2 \sin(2x)$. It remains to find a particular solution y_p . Noting that $D^2 \cdot (12x) = 0$, we apply D^2 to both sides of the DE.

We get $D^2(D^2+4) \cdot y = 0$, which is a homogeneous linear DE! Its general solution is $C_1 + C_2 x + C_3 \cos(2x) + C_4 \sin(2x)$. In particular, y_p is of this form for some choice of $C_1, ..., C_4$.

It simplifies our life to note that there has to be a particular solution of the simpler form $y_p = C_1 + C_2 x$.

[Why?! Because we know that $C_3\cos(2x) + C_4\sin(2x)$ can be added to any particular solution.] It only remains to find appropriate values C_1 , C_2 such that $y_p'' + 4y_p = 12x$. Since $y_p'' + 4y_p = 4C_1 + 4C_2x$, comparing coefficients yields $4C_1 = 0$ and $4C_2 = 12$, so that $C_1 = 0$ and $C_2 = 3$. In other words, $y_p = 3x$. Therefore, the general solution to the original DE is $y(x) = 3x + C_1\cos(2x) + C_2\sin(2x)$.

Example 31. ("warmup") Find the general solution of $y'' + 4y' + 4y = e^{3x}$.

Solution. This is $p(D)y = e^{3x}$ with $p(D) = D^2 + 4D + 4 = (D+2)^2$.

Hence, the general solution is $y(x) = y_p(x) + (C_1 + C_2 x)e^{-2x}$. It remains to find a particular solution y_p . Note that $(D-3)e^{3x} = 0$. Hence, we apply (D-3) to the DE to get $(D-3)(D+2)^2y = 0$.

This homogeneous linear DE has general solution $(C_1 + C_2 x)e^{-2x} + C_3 e^{3x}$. We conclude that the original DE must have a particular solution of the form $y_p = C_3 e^{3x}$.

To determine the value of C_3 , we plug into the original DE: $y_p'' + 4y_p' + 4y_p = (9 + 4 \cdot 3 + 4)C_3e^{3x} \stackrel{!}{=} e^{3x}$. Hence, $C_3 = 1/25$. In conclusion, the general solution is $y(x) = (C_1 + C_2x)e^{-2x} + \frac{1}{25}e^{3x}$. Comment. See Example 33 for the same solution in more compact form.

We found a recipe for solving nonhomogeneous linear DEs with constant coefficients.

Our approach works for p(D)y = f(x) whenever the right-hand side f(x) is the solution of some homogeneous linear DE with constant coefficients: q(D)f(x) = 0

Theorem 32. (method of undetermined coefficients) To find a particular solution y_p to an inhomogeneous linear DE with constant coefficients p(D)y = f(x):

- Find q(D) so that q(D)f(x) = 0.
 - Let $r_1, ..., r_n$ be the ("old") roots of the polynomial p(D).

Let $s_1, ..., s_m$ be the ("new") roots of the polynomial q(D).

• It follows that y_p solves the **homogeneous** DE q(D) p(D)y = 0.

The characteristic polynomial of this DE has roots $r_1, ..., r_n, s_1, ..., s_m$.

Let v_1, \ldots, v_m be the "new" solutions (i.e. not solutions of the "old" p(D)y=0).

By plugging into $p(D)y_p = f(x)$, we find (unique) C_i so that $y_p = C_1v_1 + \ldots + C_mv_m$.

Because of the final step, this approach is often called **method of undetermined coefficients**.

[This does not work for all f(x).]

For which f(x) does this work? By Theorem 24, we know exactly which f(x) are solutions to homogeneous linear DEs with constant coefficients: these are linear combinations of exponentials $x^j e^{rx}$ (which includes $x^j e^{ax} \cos(bx)$ and $x^j e^{ax} \sin(bx)$).

Example 33. (again) Determine the general solution of $y'' + 4y' + 4y = e^{3x}$.

Solution. The "old" roots are -2, -2. The "new" roots are 3. Hence, there has to be a particular solution of the form $y_p = Ce^{3x}$. To find the value of C, we plug into the DE.

 $y_p'' + 4y_p' + 4y_p = (9 + 4 \cdot 3 + 4)Ce^{3x} \stackrel{!}{=} e^{3x}$. Hence, C = 1/25.

Therefore, the general solution is $y(x) = (C_1 + C_2 x)e^{-2x} + \frac{1}{25}e^{3x}$.

Example 34. Determine the general solution of $y'' + 4y' + 4y = 7e^{-2x}$.

Solution. The "old" roots are -2, -2. The "new" roots are -2. Hence, there has to be a particular solution of the form $y_p = Cx^2e^{-2x}$. To find the value of C, we plug into the DE.

$$y'_p = C(-2x^2 + 2x)e^{-2x}$$

 $y_p'' = C(4x^2 - 8x + 2)e^{-2x}$ $y_p'' + 4y_p' + 4y_p = 2Ce^{-2x} \stackrel{!}{=} 7e^{-2x}$

It follows that C = 7/2, so that $y_p = \frac{7}{2}x^2e^{-2x}$. The general solution is $y(x) = \left(C_1 + C_2x + \frac{7}{2}x^2\right)e^{-2x}$.

Example 35. Determine a particular solution of $y'' + 4y' + 4y = 2e^{3x} - 5e^{-2x}$.

Solution. Write the DE as $Ly = 2e^{3x} - 5e^{-2x}$ where $L = D^2 + 4D + 4$. Instead of starting all over, recall that in Example 33 we found that $y_1 = \frac{1}{25}e^{3x}$ satisfies $Ly_1 = e^{3x}$. Also, in Example 34 we found that $y_2 = \frac{7}{2}x^2e^{-2x}$ satisfies $Ly_2 = 7e^{-2x}$.

By linearity, it follows that $L(Ay_1 + By_2) = ALy_1 + BLy_2 = Ae^{3x} + 7Be^{-2x}$.

To get a particular solution y_p of our DE, we need A = 2 and 7B = -5.

Hence, $y_p = 2y_1 - \frac{5}{7}y_2 = \frac{2}{25}e^{3x} - \frac{5}{2}x^2e^{-2x}$.

Example 36. (homework) Determine the general solution of $y'' - 2y' + y = 5\sin(3x)$.

Solution. Since $D^2 - 2D + 1 = (D - 1)^2$, the "old" roots are 1, 1. The "new" roots are $\pm 3i$. Hence, there has to be a particular solution of the form $y_p = A\cos(3x) + B\sin(3x)$.

To find the values of A and B, we plug into the DE.

$$y_p' = -3A\sin(3x) + 3B\cos(3x)$$

$$y_p^{\prime\prime} = -9A\cos(3x) - 9B\sin(3x)$$

 $y_p'' - 2y_p' + y_p = (-8A - 6B)\cos(3x) + (6A - 8B)\sin(3x) \stackrel{!}{=} 5\sin(3x)$

Equating the coefficients of $\cos(x)$, $\sin(x)$, we obtain the two equations -8A - 6B = 0 and 6A - 8B = 5. Solving these, we find $A = \frac{3}{10}$, $B = -\frac{2}{5}$. Accordingly, a particular solution is $y_p = \frac{3}{10}\cos(3x) - \frac{2}{5}\sin(3x)$. The general solution is $y(x) = \frac{3}{10}\cos(3x) - \frac{2}{5}\sin(3x) + (C_1 + C_2x)e^x$.

Example 37. (homework) What is the shape of a particular solution of $y'' + 4y' + 4y = x \cos(x)$?

Solution. The "old" roots are -2, -2. The "new" roots are $\pm i, \pm i$. Hence, there has to be a particular solution of the form $y_p = (C_1 + C_2 x)\cos(x) + (C_3 + C_4 x)\sin(x)$.

Continuing to find a particular solution. To find the value of the C_i 's, we plug into the DE.

$$y'_{p} = (C_{2} + C_{3} + C_{4}x)\cos(x) + (C_{4} - C_{1} - C_{2}x)\sin(x)$$

$$y''_{p} = (2C_{4} - C_{1} - C_{2}x)\cos(x) + (-2C_{2} - C_{3} - C_{4}x)\sin(x)$$

$$y''_{p} + 4y'_{p} + 4y_{p} = (3C_{1} + 4C_{2} + 4C_{3} + 2C_{4} + (3C_{2} + 4C_{4})x)\cos(x)$$

$$+ (-4C_{1} - 2C_{2} + 3C_{3} + 4C_{4} + (-4C_{2} + 3C_{4})x)\sin(x) \stackrel{!}{=} x\cos(x)$$

Equating the coefficients of $\cos(x)$, $x \cos(x)$, $\sin(x)$, $x \sin(x)$, we get the equations $3C_1 + 4C_2 + 4C_3 + 2C_4 = 0$, $3C_2 + 4C_4 = 1$, $-4C_1 - 2C_2 + 3C_3 + 4C_4 = 0$, $-4C_2 + 3C_4 = 0$.

Solving (this is tedious!), we find
$$C_1 = -\frac{4}{125}$$
, $C_2 = \frac{3}{25}$, $C_3 = -\frac{22}{125}$, $C_4 = \frac{4}{25}$.
Hence, $y_p = \left(-\frac{4}{125} + \frac{3}{25}x\right)\cos(x) + \left(-\frac{22}{125} + \frac{4}{25}x\right)\sin(x)$.

Armin Straub straub@southalabama.edu