Example 29. (review) Find the general solution of $y^{\prime \prime \prime}-3 y^{\prime}+2 y=0$.
Solution. The characteristic polynomial $p(D)=D^{3}-3 D+2=(D-1)^{2}(D+2)$ has roots $1,1,-2$.
By Theorem 24, the general solution is $y(x)=\left(C_{1}+C_{2} x\right) e^{x}+C_{2} e^{-2 x}$.

Inhomogeneous linear DEs with constant coefficients

Example 30. ("warmup") Find the general solution of $y^{\prime \prime}+4 y=12 x$.
Solution. Here, $p(D)=D^{2}+4$, which has roots $\pm 2 i$.
Hence, the general solution is $y(x)=y_{p}(x)+C_{1} \cos (2 x)+C_{2} \sin (2 x)$. It remains to find a particular solution y_{p}.
Noting that $D^{2} \cdot(12 x)=0$, we apply D^{2} to both sides of the DE.
We get $D^{2}\left(D^{2}+4\right) \cdot y=0$, which is a homogeneous linear DE! Its general solution is $C_{1}+C_{2} x+C_{3} \cos (2 x)+$ $C_{4} \sin (2 x)$. In particular, y_{p} is of this form for some choice of C_{1}, \ldots, C_{4}.
It simplifies our life to note that there has to be a particular solution of the simpler form $y_{p}=C_{1}+C_{2} x$.
[Why?! Because we know that $C_{3} \cos (2 x)+C_{4} \sin (2 x)$ can be added to any particular solution.] It only remains to find appropriate values C_{1}, C_{2} such that $y_{p}^{\prime \prime}+4 y_{p}=12 x$. Since $y_{p}^{\prime \prime}+4 y_{p}=4 C_{1}+4 C_{2} x$, comparing coefficients yields $4 C_{1}=0$ and $4 C_{2}=12$, so that $C_{1}=0$ and $C_{2}=3$. In other words, $y_{p}=3 x$.
Therefore, the general solution to the original DE is $y(x)=3 x+C_{1} \cos (2 x)+C_{2} \sin (2 x)$.
Example 31. ("warmup") Find the general solution of $y^{\prime \prime}+4 y^{\prime}+4 y=e^{3 x}$.
Solution. This is $p(D) y=e^{3 x}$ with $p(D)=D^{2}+4 D+4=(D+2)^{2}$.
Hence, the general solution is $y(x)=y_{p}(x)+\left(C_{1}+C_{2} x\right) e^{-2 x}$. It remains to find a particular solution y_{p}. Note that $(D-3) e^{3 x}=0$. Hence, we apply $(D-3)$ to the DE to get $(D-3)(D+2)^{2} y=0$.
This homogeneous linear DE has general solution $\left(C_{1}+C_{2} x\right) e^{-2 x}+C_{3} e^{3 x}$. We conclude that the original DE must have a particular solution of the form $y_{p}=C_{3} e^{3 x}$.
To determine the value of C_{3}, we plug into the original DE: $y_{p}^{\prime \prime}+4 y_{p}^{\prime}+4 y_{p}=(9+4 \cdot 3+4) C_{3} e^{3 x} \stackrel{!}{=} e^{3 x}$. Hence, $C_{3}=1 / 25$. In conclusion, the general solution is $y(x)=\left(C_{1}+C_{2} x\right) e^{-2 x}+\frac{1}{25} e^{3 x}$.
Comment. See Example 33 for the same solution in more compact form.
We found a recipe for solving nonhomogeneous linear DEs with constant coefficients.
Our approach works for $p(D) y=f(x)$ whenever the right-hand side $f(x)$ is the solution of some homogeneous linear DE with constant coefficients: $q(D) f(x)=0$

Theorem 32. (method of undetermined coefficients) To find a particular solution y_{p} to an inhomogeneous linear DE with constant coefficients $p(D) y=f(x)$:

- Find $q(D)$ so that $q(D) f(x)=0$.
[This does not work for all $f(x)$.]
- Let r_{1}, \ldots, r_{n} be the ("old") roots of the polynomial $p(D)$.

Let s_{1}, \ldots, s_{m} be the ("new") roots of the polynomial $q(D)$.

- It follows that y_{p} solves the homogeneous $\mathrm{DE} q(D) p(D) y=0$.

The characteristic polynomial of this DE has roots $r_{1}, \ldots, r_{n}, s_{1}, \ldots, s_{m}$.
Let v_{1}, \ldots, v_{m} be the "new" solutions (i.e. not solutions of the "old" $p(D) y=0$).
By plugging into $p(D) y_{p}=f(x)$, we find (unique) C_{i} so that $y_{p}=C_{1} v_{1}+\ldots+C_{m} v_{m}$.
Because of the final step, this approach is often called method of undetermined coefficients.
For which $\boldsymbol{f}(\boldsymbol{x})$ does this work? By Theorem 24, we know exactly which $f(x)$ are solutions to homogeneous linear DEs with constant coefficients: these are linear combinations of exponentials $x^{j} e^{r x}$ (which includes $x^{j} e^{a x} \cos (b x)$ and $\left.x^{j} e^{a x} \sin (b x)\right)$.

Example 33. (again) Determine the general solution of $y^{\prime \prime}+4 y^{\prime}+4 y=e^{3 x}$.
Solution. The "old" roots are $-2,-2$. The "new" roots are 3. Hence, there has to be a particular solution of the form $y_{p}=C e^{3 x}$. To find the value of C, we plug into the DE.
$y_{p}^{\prime \prime}+4 y_{p}^{\prime}+4 y_{p}=(9+4 \cdot 3+4) C e^{3 x} \stackrel{!}{=} e^{3 x}$. Hence, $C=1 / 25$.
Therefore, the general solution is $y(x)=\left(C_{1}+C_{2} x\right) e^{-2 x}+\frac{1}{25} e^{3 x}$.
Example 34. Determine the general solution of $y^{\prime \prime}+4 y^{\prime}+4 y=7 e^{-2 x}$.
Solution. The "old" roots are $-2,-2$. The "new" roots are -2 . Hence, there has to be a particular solution of the form $y_{p}=C x^{2} e^{-2 x}$. To find the value of C, we plug into the DE.
$y_{p}^{\prime}=C\left(-2 x^{2}+2 x\right) e^{-2 x}$
$y_{p}^{\prime \prime}=C\left(4 x^{2}-8 x+2\right) e^{-2 x}$
$y_{p}^{\prime \prime}+4 y_{p}^{\prime}+4 y_{p}=2 C e^{-2 x} \stackrel{!}{=} 7 e^{-2 x}$
It follows that $C=7 / 2$, so that $y_{p}=\frac{7}{2} x^{2} e^{-2 x}$. The general solution is $y(x)=\left(C_{1}+C_{2} x+\frac{7}{2} x^{2}\right) e^{-2 x}$.
Example 35. Determine a particular solution of $y^{\prime \prime}+4 y^{\prime}+4 y=2 e^{3 x}-5 e^{-2 x}$.
Solution. Write the DE as $L y=2 e^{3 x}-5 e^{-2 x}$ where $L=D^{2}+4 D+4$. Instead of starting all over, recall that in Example 33 we found that $y_{1}=\frac{1}{25} e^{3 x}$ satisfies $L y_{1}=e^{3 x}$. Also, in Example 34 we found that $y_{2}=\frac{7}{2} x^{2} e^{-2 x}$ satisfies $L y_{2}=7 e^{-2 x}$.
By linearity, it follows that $L\left(A y_{1}+B y_{2}\right)=A L y_{1}+B L y_{2}=A e^{3 x}+7 B e^{-2 x}$.
To get a particular solution y_{p} of our DE, we need $A=2$ and $7 B=-5$.
Hence, $y_{p}=2 y_{1}-\frac{5}{7} y_{2}=\frac{2}{25} e^{3 x}-\frac{5}{2} x^{2} e^{-2 x}$.
Example 36. (homework) Determine the general solution of $y^{\prime \prime}-2 y^{\prime}+y=5 \sin (3 x)$.
Solution. Since $D^{2}-2 D+1=(D-1)^{2}$, the "old" roots are 1,1 . The "new" roots are $\pm 3 i$. Hence, there has to be a particular solution of the form $y_{p}=A \cos (3 x)+B \sin (3 x)$.
To find the values of A and B, we plug into the DE.
$y_{p}^{\prime}=-3 A \sin (3 x)+3 B \cos (3 x)$
$y_{p}^{\prime \prime}=-9 A \cos (3 x)-9 B \sin (3 x)$
$y_{p}^{\prime \prime}-2 y_{p}^{\prime}+y_{p}=(-8 A-6 B) \cos (3 x)+(6 A-8 B) \sin (3 x) \stackrel{!}{=} 5 \sin (3 x)$
Equating the coefficients of $\cos (x), \sin (x)$, we obtain the two equations $-8 A-6 B=0$ and $6 A-8 B=5$.
Solving these, we find $A=\frac{3}{10}, B=-\frac{2}{5}$. Accordingly, a particular solution is $y_{p}=\frac{3}{10} \cos (3 x)-\frac{2}{5} \sin (3 x)$.
The general solution is $y(x)=\frac{3}{10} \cos (3 x)-\frac{2}{5} \sin (3 x)+\left(C_{1}+C_{2} x\right) e^{x}$.

Example 37. (homework) What is the shape of a particular solution of $y^{\prime \prime}+4 y^{\prime}+4 y=x \cos (x)$?
Solution. The "old" roots are $-2,-2$. The "new" roots are $\pm i, \pm i$. Hence, there has to be a particular solution of the form $y_{p}=\left(C_{1}+C_{2} x\right) \cos (x)+\left(C_{3}+C_{4} x\right) \sin (x)$.
Continuing to find a particular solution. To find the value of the C_{j} 's, we plug into the DE .
$y_{p}^{\prime}=\left(C_{2}+C_{3}+C_{4} x\right) \cos (x)+\left(C_{4}-C_{1}-C_{2} x\right) \sin (x)$
$y_{p}^{\prime \prime}=\left(2 C_{4}-C_{1}-C_{2} x\right) \cos (x)+\left(-2 C_{2}-C_{3}-C_{4} x\right) \sin (x)$
$y_{p}^{\prime \prime}+4 y_{p}^{\prime}+4 y_{p}=\left(3 C_{1}+4 C_{2}+4 C_{3}+2 C_{4}+\left(3 C_{2}+4 C_{4}\right) x\right) \cos (x)$
$+\left(-4 C_{1}-2 C_{2}+3 C_{3}+4 C_{4}+\left(-4 C_{2}+3 C_{4}\right) x\right) \sin (x) \stackrel{!}{=} x \cos (x)$.
Equating the coefficients of $\cos (x), x \cos (x), \sin (x), x \sin (x)$, we get the equations $3 C_{1}+4 C_{2}+4 C_{3}+2 C_{4}=0$, $3 C_{2}+4 C_{4}=1,-4 C_{1}-2 C_{2}+3 C_{3}+4 C_{4}=0,-4 C_{2}+3 C_{4}=0$.
Solving (this is tedious!), we find $C_{1}=-\frac{4}{125}, C_{2}=\frac{3}{25}, C_{3}=-\frac{22}{125}, C_{4}=\frac{4}{25}$.
Hence, $y_{p}=\left(-\frac{4}{125}+\frac{3}{25} x\right) \cos (x)+\left(-\frac{22}{125}+\frac{4}{25} x\right) \sin (x)$.

