Review: Linear DEs

A linear DE of order n is of the form $y^{(n)}+p_{n-1}(x) y^{(n-1)}+\ldots+p_{1}(x) y^{\prime}+p_{0}(x) y=f(x)$.

- In terms of $D=\frac{\mathrm{d}}{\mathrm{d} x}$, the DE becomes: $L y=f(x)$ with $L=D^{n}+p_{n-1}(x) D^{n-1}+\ldots+p_{1}(x) D+p_{0}(x)$. Comment. L is called a (linear) differential operator.
- The inclusion of the $f(x)$ term makes $L y=f(x)$ an inhomogeneous linear DE.
- $L y=0$ is the corresponding homogeneous DE.
- If y_{1} and y_{2} are solutions to the homogeneous DE , then so is any linear combination $C_{1} y_{1}+C_{2} y_{2}$.
- (general solution of the homogeneous DE) There are n solutions $y_{1}, y_{2}, \ldots, y_{n}$, such that every solution is of the form $C_{1} y_{1}+\ldots+C_{n} y_{n}$. [These n solutions necessarily are independent.]
- To find the general solution of the inhomogeneous DE , we only need to find a single solution y_{p} (called a particular solution). Then the general solution is $y_{p}+y_{h}$, where y_{h} is the general solution of the homogeneous DE.

Example 20. Consider the following DEs. If linear, write them in operator form as $L y=f(x)$.
(a) $y^{\prime \prime}=x y$
(b) $x^{2} y^{\prime \prime}+x y^{\prime}=\left(x^{2}+4\right) y+x\left(x^{2}+3\right)$
(c) $y^{\prime \prime}=y^{\prime}+2 y+2\left(1-x-x^{2}\right)$
(d) $y^{\prime \prime}=y^{\prime}+2 y+2\left(1-x-y^{2}\right)$

Solution.
(a) This is a homogeneous linear DE: $\quad \underbrace{\left(D^{2}-x\right) y}_{L}=\underset{f(x)}{0}$

Note. This is known as the Airy equation, which we will meet again later. The general solution is of the form $C_{1} y_{1}(x)+C_{2} y_{2}(x)$ for two special solutions y_{1}, y_{2}. [In the literature, one usually chooses functions called $\operatorname{Ai}(x)$ and $\operatorname{Bi}(x)$ as y_{1} and y_{2}. See: https://en.wikipedia.org/wiki/Airy_function]
(b) This is an inhomogeneous linear DE: $\quad \underbrace{\left(x^{2} D^{2}+x D-\left(x^{2}+4\right)\right) y}_{L}=\underbrace{x\left(x^{2}+3\right)}_{f(x)}$

Note. The corresponding homogeneous DE is an instance of the "modified Bessel equation" $x^{2} y^{\prime \prime}+$ $x y^{\prime}-\left(x^{2}+\alpha^{2}\right) y=0$, namely the case $\alpha=2$. Because they are important for applications (but cannot be written in terms of familiar functions), people have introduced names for two special solutions of this differential equation: $I_{\alpha}(x)$ and $K_{\alpha}(x)$ (called modified Bessel functions of the first and second kind). It follows that the general solution of the modified Bessel equation is $C_{1} I_{\alpha}(x)+C_{2} K_{\alpha}(x)$.
In our case. The general solution of the homogeneous DE (which is the modified Bessel equation with $\alpha=2$) is $C_{1} I_{2}(x)+C_{2} K_{2}(x)$. On the other hand, we can (do it!) easily check (this is coming from nowhere at this point!) that $y_{p}=-x$ is a particular solution to the original inhomogeneous DE .
It follows that the general solution to the original DE is $C_{1} I_{2}(x)+C_{2} K_{2}(x)-x$.
(c) This is an inhomogeneous linear DE: $\quad \underbrace{\left(D^{2}-D-2\right)}_{L} y=\underbrace{2\left(1-x-x^{2}\right)}_{f(x)}$

Note. We will recall in Example 21 that the corresponding homogeneous DE $\left(D^{2}-D-2\right) y=0$ has general solution $C_{1} e^{2 x}+C_{2} e^{-x}$. On the other hand, we can check that $y_{p}=x^{2}$ is a particular solution of the original inhomogeneous DE. (Do you recall from DE1 how to find this particular solution?)
It follows that the general solution to the original DE is $x^{2}+C_{1} e^{2 x}+C_{2} e^{-x}$.
(d) This is not a linear DE because of the term y^{2}. It cannot be written in the form $L y=f(x)$.

