Review: Linear DEs

A linear DE of order *n* is of the form $y^{(n)} + p_{n-1}(x) y^{(n-1)} + ... + p_1(x)y' + p_0(x)y = f(x)$.

- In terms of $D = \frac{d}{dx}$, the DE becomes: Ly = f(x) with $L = D^n + p_{n-1}(x)D^{n-1} + ... + p_1(x)D + p_0(x)$. Comment. L is called a (linear) differential operator.
- The inclusion of the f(x) term makes Ly = f(x) an inhomogeneous linear DE.
- Ly = 0 is the corresponding **homogeneous** DE.
 - If y_1 and y_2 are solutions to the homogeneous DE, then so is any linear combination $C_1y_1 + C_2y_2$.
 - (general solution of the homogeneous DE) There are n solutions $y_1, y_2, ..., y_n$, such that every solution is of the form $C_1y_1 + ... + C_n y_n$. [These n solutions necessarily are independent.]
- To find the general solution of the inhomogeneous DE, we only need to find a single solution y_p (called a **particular solution**). Then the general solution is $y_p + y_h$, where y_h is the general solution of the homogeneous DE.

Example 20. Consider the following DEs. If linear, write them in operator form as Ly = f(x).

- (a) y'' = xy
- (b) $x^2y'' + xy' = (x^2 + 4)y + x(x^2 + 3)$

(c)
$$y'' = y' + 2y + 2(1 - x - x^2)$$

(d) $y'' = y' + 2y + 2(1 - x - y^2)$

Solution.

(a) This is a homogeneous linear DE: $\underbrace{(D^2 - x)y}_{L} = \underbrace{0}_{f(x)}$

Note. This is known as the Airy equation, which we will meet again later. The general solution is of the form $C_1y_1(x) + C_2y_2(x)$ for two special solutions y_1, y_2 . [In the literature, one usually chooses functions called Ai(x) and Bi(x) as y_1 and y_2 . See: https://en.wikipedia.org/wiki/Airy_function]

(b) This is an inhomogeneous linear DE: $\underbrace{(x^2D^2 + xD - (x^2 + 4))y}_{L} = \underbrace{x(x^2 + 3)}_{f(x)}$

Note. The corresponding homogeneous DE is an instance of the "modified Bessel equation" $x^2y'' + xy' - (x^2 + \alpha^2)y = 0$, namely the case $\alpha = 2$. Because they are important for applications (but cannot be written in terms of familiar functions), people have introduced names for two special solutions of this differential equation: $I_{\alpha}(x)$ and $K_{\alpha}(x)$ (called modified Bessel functions of the first and second kind). It follows that the general solution of the modified Bessel equation is $C_1I_{\alpha}(x) + C_2K_{\alpha}(x)$.

In our case. The general solution of the homogeneous DE (which is the modified Bessel equation with $\alpha = 2$) is $C_1I_2(x) + C_2K_2(x)$. On the other hand, we can (do it!) easily check (this is coming from nowhere at this point!) that $y_p = -x$ is a particular solution to the original inhomogeneous DE. It follows that the general solution to the original DE is $C_1I_2(x) + C_2K_2(x) - x$.

(c) This is an inhomogeneous linear DE: $\underbrace{(D^2 - D - 2)y}_{L} = \underbrace{2(1 - x - x^2)}_{f(x)}$

Note. We will recall in Example 21 that the corresponding homogeneous DE $(D^2 - D - 2)y = 0$ has general solution $C_1e^{2x} + C_2e^{-x}$. On the other hand, we can check that $y_p = x^2$ is a particular solution of the original inhomogeneous DE. (Do you recall from DE1 how to find this particular solution?) It follows that the general solution to the original DE is $x^2 + C_1e^{2x} + C_2e^{-x}$.

(d) This is not a linear DE because of the term y^2 . It cannot be written in the form Ly = f(x).