Sketch of Lecture 37

 \diamond

Review. undetermined coefficients

Example 140. Consider $\mathbf{x}' = A\mathbf{x} + \mathbf{f}(t)$, where A is a 7 × 7 matrix with eigenvalues $1 \pm 2i$, $1 \pm 2i, 0, 3, 3$. For different choices of $\mathbf{f}(t)$, we set up \mathbf{x}_p with undetermined coefficients.

$\boldsymbol{f}(t)$	"new" roots	$oldsymbol{x}_p$
$oldsymbol{g} e^t$	1	ae^t
g	0	at + b
$\boldsymbol{g}\sin\left(2t\right)$	$\pm 2i$	$\boldsymbol{a}\cos(2t) + \boldsymbol{b}\sin(2t)$
$\mathbf{g}e^t\sin(2t)$	$1\pm 2i$	$(a_{1}t^{2} + a_{2}t + a_{3})e^{t}\cos(2t) + (a_{4}t^{2} + a_{5}t + a_{6})e^{t}\sin(2t)$
$g(t^2+7)e^{3t}$	3, 3, 3	$(a_1t^4 + a_2t^3 + a_3t^2 + a_4t + a_5)e^{3t}$
$\boldsymbol{g}(t^2 - 3t) + \boldsymbol{h} e^t \cos(t)$	$0, 0, 0, 1 \pm i$	$(a_1t^3 + a_2t^2 + a_3t + a_4) + a_5e^t\cos(t) + a_6e^t\sin(t)$

It should be remarked that, based on the information on A that we have, the forms for \boldsymbol{x}_p are for the "worst possible" case. If, for instance, the eigenvalue $1 \pm 2i$ had no defect, then the form of \boldsymbol{x}_p for $\boldsymbol{f}(t) = \boldsymbol{g}e^t \sin(2t)$ would simplify to $\boldsymbol{x}_p = (\boldsymbol{a}_1t + \boldsymbol{a}_2)e^t \cos(2t) + (\boldsymbol{a}_3t + \boldsymbol{a}_4)e^t \sin(2t)$. Do you see why?

Theorem 141. (variation of constants) The DE x' = A(t)x + f(t) is solved by

$$\boldsymbol{x}_p(t) = \Phi(t) \int \Phi(t)^{-1} \boldsymbol{f}(t) \mathrm{d}t.$$

Here, $\Phi(t)$ is any fundamental matrix for $\mathbf{x}' = A(t) \mathbf{x}$.

Proof. Recall that the general solution of the homogeneous equation $\mathbf{x}' = A(t) \mathbf{x}$ is $\mathbf{x}_c = \Phi(t) \mathbf{c}$. We are going to vary the constant \mathbf{c} and look for a particular solution of the form $\mathbf{x}_p = \Phi(t)\mathbf{u}(t)$.

Plugging into the DE, we get

$$\boldsymbol{x}_{p}'(t) = \Phi'(t)\boldsymbol{u}(t) + \Phi(t)\boldsymbol{u}'(t) = A\Phi(t)\boldsymbol{u}(t) + \Phi(t)\boldsymbol{u}'(t) \stackrel{!}{=} A\boldsymbol{x}_{p}(t) + \boldsymbol{f}(t) = A\Phi(t)\boldsymbol{u}(t) + \boldsymbol{f}(t).$$

For the first equality, we used the matrix version of the usual product rule (which holds since differentiation is defined entry-wise). For the second equality, we used $\Phi' = A\Phi$.

Subtracting $A \Phi \boldsymbol{u}$, we see that $\boldsymbol{x}_p = \Phi(t) \boldsymbol{u}(t)$ is a solution if and only if $\Phi(t) \boldsymbol{u}'(t) = \boldsymbol{f}(t)$. Hence, $\boldsymbol{u}'(t) = \Phi(t)^{-1} \boldsymbol{f}(t)$ and it only remains to integrate.

Example 142. Find a particular solution of $\mathbf{x}' = \begin{pmatrix} 2 & 3 \\ 2 & 1 \end{pmatrix} \mathbf{x} + \begin{pmatrix} 0 \\ -2e^{3t} \end{pmatrix}$.

Solution. From previous examples, we know that $\Phi(t) = \begin{pmatrix} e^{-t} & 3e^{4t} \\ -e^{-t} & 2e^{4t} \end{pmatrix}$. Using det $\Phi = 5e^{3t}$, we find $\Phi(t)^{-1} = \frac{1}{5} \begin{pmatrix} 2e^t & -3e^t \\ e^{-4t} & e^{-4t} \end{pmatrix}$. Hence, $\Phi(t)^{-1} \mathbf{f}(t) = \frac{2}{5} \begin{pmatrix} 3e^{4t} \\ -e^{-t} \end{pmatrix}$ and $\int \Phi(t)^{-1} \mathbf{f}(t) dt = \frac{2}{5} \begin{pmatrix} 3/4e^{4t} \\ e^{-t} \end{pmatrix}$.

By variation of constants, $\boldsymbol{x}_{p}(t) = \Phi(t) \int \Phi(t)^{-1} \boldsymbol{f}(t) dt = \begin{pmatrix} e^{-t} & 3e^{4t} \\ -e^{-t} & 2e^{4t} \end{pmatrix}^{2} \begin{pmatrix} 3/4e^{4t} \\ e^{-t} \end{pmatrix} = \frac{2}{5} \begin{pmatrix} 15/4 \\ 5/4 \end{pmatrix} e^{3t} = \begin{pmatrix} 3/2 \\ 1/2 \end{pmatrix} e^{3t}.$

Note that this matches the result we obtained in Example 137.

By the way, why do we not need to be careful about the constants of integration?

 \diamond