Sketch of Lecture 37

Review. undetermined coefficients

Example 140. Consider $\boldsymbol{x}^{\prime}=A \boldsymbol{x}+\boldsymbol{f}(t)$, where A is a 7×7 matrix with eigenvalues $1 \pm 2 i$, $1 \pm 2 i, 0,3,3$. For different choices of $\boldsymbol{f}(t)$, we set up \boldsymbol{x}_{p} with undetermined coefficients.

$\boldsymbol{f}(t)$	"new" roots	\boldsymbol{x}_{p}
$\boldsymbol{g} e^{t}$	1	$\boldsymbol{a} e^{t}$
\boldsymbol{g}	0	$\boldsymbol{a} t+\boldsymbol{b}$
$\boldsymbol{g} \sin (2 t)$	$\pm 2 i$	$\boldsymbol{a} \cos (2 t)+\boldsymbol{b} \sin (2 t)$
$\boldsymbol{g} e^{t} \sin (2 t)$	$1 \pm 2 i$	$\left(\boldsymbol{a}_{1} t^{2}+\boldsymbol{a}_{2} t+\boldsymbol{a}_{3}\right) e^{t} \cos (2 t)+\left(\boldsymbol{a}_{4} t^{2}+\boldsymbol{a}_{5} t+\boldsymbol{a}_{6}\right) e^{t} \sin (2 t)$
$\boldsymbol{g}\left(t^{2}+7\right) e^{3 t}$	$3,3,3$	$\left(\boldsymbol{a}_{1} t^{4}+\boldsymbol{a}_{2} t^{3}+\boldsymbol{a}_{3} t^{2}+\boldsymbol{a}_{4} t+\boldsymbol{a}_{5}\right) e^{3 t}$
$\boldsymbol{g}\left(t^{2}-3 t\right)+\boldsymbol{h} e^{t} \cos (t)$	$0,0,0,1 \pm i$	$\left(\boldsymbol{a}_{1} t^{3}+\boldsymbol{a}_{2} t^{2}+\boldsymbol{a}_{3} t+\boldsymbol{a}_{4}\right)+\boldsymbol{a}_{5} e^{t} \cos (t)+\boldsymbol{a}_{6} e^{t} \sin (t)$

It should be remarked that, based on the information on A that we have, the forms for \boldsymbol{x}_{p} are for the "worst possible" case. If, for instance, the eigenvalue $1 \pm 2 i$ had no defect, then the form of \boldsymbol{x}_{p} for $\boldsymbol{f}(t)=\boldsymbol{g} e^{t} \sin (2 t)$ would simplify to $\boldsymbol{x}_{p}=\left(\boldsymbol{a}_{1} t+\boldsymbol{a}_{2}\right) e^{t} \cos (2 t)+\left(\boldsymbol{a}_{3} t+\boldsymbol{a}_{4}\right) e^{t} \sin (2 t)$. Do you see why?

Theorem 141. (variation of constants) The $\mathrm{DE} \boldsymbol{x}^{\prime}=A(t) \boldsymbol{x}+\boldsymbol{f}(t)$ is solved by

$$
\boldsymbol{x}_{p}(t)=\Phi(t) \int \Phi(t)^{-1} \boldsymbol{f}(t) \mathrm{d} t .
$$

Here, $\Phi(t)$ is any fundamental matrix for $\boldsymbol{x}^{\prime}=A(t) \boldsymbol{x}$.
Proof. Recall that the general solution of the homogeneous equation $\boldsymbol{x}^{\prime}=A(t) \boldsymbol{x}$ is $\boldsymbol{x}_{c}=\Phi(t) \boldsymbol{c}$. We are going to vary the constant \boldsymbol{c} and look for a particular solution of the form $\boldsymbol{x}_{p}=\Phi(t) \boldsymbol{u}(t)$.
Plugging into the DE, we get
$\boldsymbol{x}_{p}^{\prime}(t)=\Phi^{\prime}(t) \boldsymbol{u}(t)+\Phi(t) \boldsymbol{u}^{\prime}(t)=A \Phi(t) \boldsymbol{u}(t)+\Phi(t) \boldsymbol{u}^{\prime}(t) \stackrel{!}{=} A \boldsymbol{x}_{p}(t)+\boldsymbol{f}(t)=A \Phi(t) \boldsymbol{u}(t)+\boldsymbol{f}(t)$.
For the first equality, we used the matrix version of the usual product rule (which holds since differentiation is defined entry-wise). For the second equality, we used $\Phi^{\prime}=A \Phi$.
Subtracting $A \Phi \boldsymbol{u}$, we see that $\boldsymbol{x}_{p}=\Phi(t) \boldsymbol{u}(t)$ is a solution if and only if $\Phi(t) \boldsymbol{u}^{\prime}(t)=\boldsymbol{f}(t)$.
Hence, $\boldsymbol{u}^{\prime}(t)=\Phi(t)^{-1} \boldsymbol{f}(t)$ and it only remains to integrate.
Example 142. Find a particular solution of $\boldsymbol{x}^{\prime}=\left(\begin{array}{ll}2 & 3 \\ 2 & 1\end{array}\right) \boldsymbol{x}+\binom{0}{-2 e^{3 t}}$.
Solution. From previous examples, we know that $\Phi(t)=\left(\begin{array}{cc}e^{-t} & 3 e^{4 t} \\ -e^{-t} & 2 e^{4 t}\end{array}\right)$.
Using $\operatorname{det} \Phi=5 e^{3 t}$, we find $\Phi(t)^{-1}=\frac{1}{5}\left(\begin{array}{cc}2 e^{t} & -3 e^{t} \\ e^{-4 t} & e^{-4 t}\end{array}\right)$.
Hence, $\Phi(t)^{-1} \boldsymbol{f}(t)=\frac{2}{5}\binom{3 e^{4 t}}{-e^{-t}}$ and $\int \Phi(t)^{-1} \boldsymbol{f}(t) \mathrm{d} t=\frac{2}{5}\binom{3 / 444 t}{e^{-t}}$.
By variation of constants, $\boldsymbol{x}_{p}(t)=\Phi(t) \int \Phi(t)^{-1} \boldsymbol{f}(t) \mathrm{d} t=\left(\begin{array}{cc}e^{-t} & 3 e^{4 t} \\ -e^{-t} & 2 e^{4 t}\end{array}\right) \frac{2}{5}\binom{3 / 4 e^{4 t}}{e^{-t}}=\frac{2}{5}\binom{15 / 4}{5 / 4} e^{3 t}=\binom{3 / 2}{1 / 2} e^{3 t}$.
Note that this matches the result we obtained in Example 137.
By the way, why do we not need to be careful about the constants of integration?

