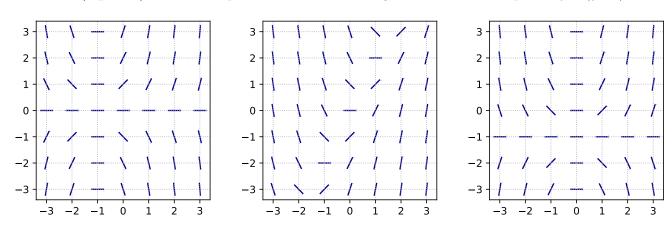
Midterm #1

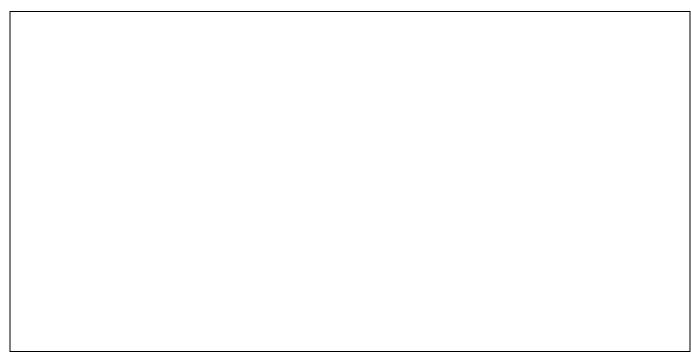
Please print your name:

No notes, calculators or tools of any kind are permitted. There are 29 points in total. You need to show work to receive full credit.

Good luck!


Problem 1. (4 points) A rising population is modeled by the equation $\frac{dP}{dt} = 600P - 2P^2$. Answer the following questions without solving the differential equation.

- (a) When the population size stabilizes in the long term, how big will the population be?
- (b) What is the population size when it is growing the fastest?


Problem 2. (4 points) Consider the IVP $\frac{dy}{dx} = x + 2y$ with y(1) = 0. Approximate the solution y(x) for $x \in [1, 2]$ using Euler's method with 2 steps. In particular, what is the approximation of y(2)?

Problem 3. (8 points) A tank contains 10gal of pure water. It is filled with brine (containing 4lb/gal salt) at a rate of $2gal/min$. At the same time, well-mixed solution flows out at a rate of $1gal/min$. How much salt is in the tank after t minutes?
Problem 4. (2 points) In the differential equation $(3x+1)\frac{dy}{dx} = 4y - \sin\left(1 + \frac{y}{x^2}\right)$ substitute $u = 1 + \frac{y}{x^2}$. What is the resulting differential equation for u ?

Problem 5. (2 points) Circle the slope field below which belongs to the differential equation y' = (y+1)x.

Problem 6. (6 points) Find a general solution to the differential equation $\frac{dy}{dx} + 1 = \sqrt{x+y}$.

Problem 7. (3 points) Consider the initial value problem $(4-x^2)y' = 3\cos(5y^2+1)$, y(a) = b. For which values of a and b can we guarantee existence and uniqueness of a (local) solution?

(extra scratch paper)