Notes for Lecture 31 Fri, 11/7/2025

We now revisit and finish Example 125:

Example 133. Consider two brine tanks. Initially, tank 77 is filled with 24gal water containing
3lb salt, and tank 75 with 9gal pure water.

e T is being filled with 54gal/min water containing 0.5lb/gal salt.
e  72gal/min well-mixed solution flows out of 77 into T%.
e 18gal/min well-mixed solution flows out of 75 into 7}.

e Finally, 54gal/min well-mixed solution is leaving T5.

How much salt is in the tanks after ¢ minutes?
Solution. Note that the amount of water in each tank is constant because the flows balance each other.
Let y;(t) denote the amount of salt (in Ib) in tank 7; after time ¢ (in min). In the time interval [t, ¢+ At]:

Ay1z54é-At—72-%-At+18-%-&, so yi =27 — 3y1 + 2y2. Also, y1(0) =3.
Aywn-%At—(18+54)-%-At, so y5 = 3y1 — 8ya. Also, y2(0) =0.

In conclusion, we have obtained the system of equations

y1 = —3y1+2y2+27, y1(0) =3,
vy = 3y1—8ysz, y2(0) =0.

One strategy to solve this system is to first combine the two DEs to get a single equation for y.

e From the first DE, we get yo = %yi + %yl _ %

e Using this in the second DE, we obtain (éy{ + gyl — g)/ =3y1 — 8(%y{ + gyl — %)
Simplified, this is y|’ + 11y} + 18y, = 216.

e We already have the initial condition y1(0) = 3. We get a second one by combining 2 :%y{ +%y1 - %

with 2(0) =0 to get 0=12(0) =241 (0) + 331(0) — 2-=2y1(0) — 9, which simplifies to y{(0) = 18.
e ThelVP yi'+ 11y] + 18y; = 216 with initial conditions y1(0) =3 and y1(0) = 18 is one that we can solve!

o  The general solution of the corresponding homogeneous equation is 1, = C1e ™2t + Coe ™9t

o The simplest particular solution is of the form 3, = C'. Plugging into the DE, we find y, =2 =12,

o Hence, the general solution to the (inhomogeneous) DE is y1(x) = 12+ Cie ™2t 4 Cae L.

| !
We then use the initial conditions y1(0) =12+ Cy + Co = 3, y1(0) = —2C71 — 9C5 = 18 to find
that for the unique solution of the IVP C; = -9, C3=0.

The unique solution is y1(t) = 12 — 9e 2L,

o It follows that ys = %y{ + %m S99

—2t
2 2 2 ’

€

Note. We could have found a particular solution with less calculations by observing (looking at the characteristic
roots of the homogeneous DE and the inhomogeneous part) that there must be a solution of the form y,(t) =a.
We can then find a by plugging into the differential equation. However, noticing that, for a constant solution,

each tank has to have a constant concentration of 0.5lb/gal of salt, we find y,(¢) :{ 4125 }
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Example 134. (extra) Three brine tanks 77,75, T5.
Ty contains 20gal water with 10lb salt, 75 40gal pure water, T3 50gal water with 30Ib salt.

Ty is filled with 10gal/min water with 2lb/gal salt. 10gal/min well-mixed solution flows out of
T} into T5. Also, 10gal/min well-mixed solution flows out of 75 into 75. Finally, 10gal/min well-
mixed solution is leaving T5. How much salt is in the tanks after ¢ minutes?

Solution. Let y;(t) denote the amount of salt (in Ib) in tank Tj after time ¢ (in min).

In the time interval [t, ¢+ At]:

Ay1~10-2- At — 1025 At, so yf =20 — Sy1. Also, y1(0) = 10.

, 1 1
Ays~10- Qy—é CAt — 10;’—8 -At, so yb= 5Y1—7Y2. Also, y2(0) =0.

: 1 1
Ays = 10~2—; At — 10% - At, so yézzyz —=y3. Also, y3(0) = 30.
-1/2 0 0
1/2 —1/4 0
0o 1/4 -1/5

Using matrix notation and writing y = y+

Y1 L. ,
v |, thisis y' =
Ys

20 10

o |, y(0)=| o |
0 30
We can actually solve this VP!

[Do it! Start by finding y; from the first DE, then move on to ya...]

Here, we content ourselves with finding a particular solution (and ignoring the initial conditions). The method
of undetermined coefficients tells us that there is a solution of the form y,(t) = a. Of course, we can find a by
plugging into the differential equation. However, noticing that, for a constant solution, each tank has to have a
concentration of 2lb/gal of salt, we find y, = (40, 80, 100) without calculation.
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