Example 129. Consider the following system of (second-order) initial value problems:

$$y_1'' = 2y_1' - 3y_2' + 7y_2$$

 $y_2'' = 4y_1' + y_2' - 5y_1$ $y_1(0) = 2$, $y_1'(0) = 3$, $y_2(0) = -1$, $y_2'(0) = 1$

Write it as a first-order initial value problem in the form y' = My, $y(0) = y_0$.

Solution. Introduce $y_3 = y_1'$ and $y_4 = y_2'$. Then, the given system translates into

$$\boldsymbol{y}' = \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 7 & 2 & -3 \\ -5 & 0 & 4 & 1 \end{bmatrix} \boldsymbol{y}, \quad \boldsymbol{y}(0) = \begin{bmatrix} 2 \\ -1 \\ 3 \\ 1 \end{bmatrix}.$$

Example 130. Consider the following system of initial value problems:

$$y_1''' = 2y_1'' - 3y_1 + 7y_2$$

 $y_2'' = 4y_1' + y_2' + 5y_2$ $y_1(0) = 2$, $y_1'(0) = 3$, $y_1''(0) = 4$, $y_2(0) = -1$, $y_2'(0) = 1$

Write it as a first-order initial value problem in the form y' = My, $y(0) = y_0$.

Solution. Introduce $y_3 = y_1'$, $y_4 = y_1''$ and $y_5 = y_2'$. Then, the given system translates into

$$\boldsymbol{y}' = \begin{bmatrix} 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 \\ -3 & 7 & 0 & 2 & 0 \\ 0 & 5 & 4 & 0 & 1 \end{bmatrix} \boldsymbol{y}, \quad \boldsymbol{y}(0) = \begin{bmatrix} 2 \\ -1 \\ 3 \\ 4 \\ 1 \end{bmatrix}.$$

Solving systems of differential equations

Example 131. Determine the general solution to $y_1' = 5y_1 + 4y_2 + e^{2x}$, $y_2' = 8y_1 + y_2$.

Solution. From the second equation it follows that $y_1=\frac{1}{8}(y_2'-y_2)$. Using this in the first equation, we get $\frac{1}{8}(y_2''-y_2')=\frac{5}{8}(y_2'-y_2)+4y_2+e^{2x}$. After multiplying with 8, this is $y_2''-y_2'=5(y_2'-y_2)+32y_2+8e^{2x}$.

Simplified, this is $y_2'' - 6y_2' - 27y_2 = 8e^{2x}$, which is an inhomogeneous linear DE with constant coefficients which we know how to solve:

- Since the characteristic roots of the homogeneous DE are -3, 9, while the characteristic root for the inhomogeneous part is 2, there must be a particular solution of the form $y_p = Ce^{2x}$. Plugging this y_p into the DE, we get $y_p'' 6y_p' 27y_p = (4 6 \cdot 2 27)Ce^{2x} = -35Ce^{2x} \stackrel{!}{=} 8e^{2x}$. Hence, $C = -\frac{8}{35}$.
- We therefore obtain $y_2 = -\frac{8}{35}e^{2x} + C_1e^{-3x} + C_2e^{9x}$ as the general solution to the inhomogeneous DE.

We can then determine y_1 as

$$y_1 = \frac{1}{8}(y_2' - y_2)$$

$$= \frac{1}{8} \left(-\frac{16}{35}e^{2x} - 3C_1e^{-3x} + 9C_2e^{9x} + \frac{8}{35}e^{2x} - C_1e^{-3x} - C_2e^{9x} \right)$$

$$= -\frac{1}{35}e^{2x} - \frac{1}{2}C_1e^{-3x} + C_2e^{9x}.$$

Solution. (alternative) We can also start with $y_2=\frac{1}{4}y_1'-\frac{5}{4}y_1-\frac{1}{4}e^{2x}$ (from the first equation), although the algebra will require a little more work. In that case, we have $y_2'=\frac{1}{4}y_1''-\frac{5}{4}y_1'-\frac{1}{2}e^{2x}$. Using this in the second equation, we get $\frac{1}{4}y_1''-\frac{5}{4}y_1'-\frac{1}{2}e^{2x}=8y_1+\frac{1}{4}y_1'-\frac{5}{4}y_1-\frac{1}{4}e^{2x}$.

Simplified, this is $y_1'' - 6y_1' - 27y_1 = e^{2x}$, which is an inhomogeneous linear DE with constant coefficients which know how to solve:

- Since the characteristic roots of the homogeneous DE are -3, 9, while the characteristic root for the inhomogeneous part is 2, there must be a particular solution of the form $y_p = Ce^{2x}$. Plugging this y_p into the DE, we get $y_p'' 6y_p' 27y_p = (4 6 \cdot 2 27)Ce^{2x} = -35Ce^{2x} \stackrel{!}{=} e^{2x}$. Hence, $C = -\frac{1}{35}$.
- We therefore obtain $y_1 = -\frac{1}{35}e^{2x} + C_1e^{-3x} + C_2e^{9x}$ as the general solution to the inhomogeneous DE.

We can then determine y_2 as

$$y_{2} = \frac{1}{4}y'_{1} - \frac{5}{4}y_{1} - \frac{1}{4}e^{2x}$$

$$= \frac{1}{4}\left(-\frac{2}{35}e^{2x} - 3C_{1}e^{-3x} + 9C_{2}e^{9x}\right) - \frac{5}{4}\left(-\frac{1}{35}e^{2x} + C_{1}e^{-3x} + C_{2}e^{9x}\right) - \frac{1}{4}e^{2x}$$

$$= -\frac{8}{35}e^{2x} - 2C_{1}e^{-3x} + C_{2}e^{9x}.$$

Important. Make sure you can explain why both of our solutions are equivalent!

Example 132.

- (a) Determine the general solution to $y_1'=5y_1+4y_2$, $y_2'=8y_1+y_2$. Comment. In matrix form, with ${\pmb y}=\left[\begin{array}{cc} y_1\\y_2\end{array}\right]$, this is ${\pmb y}'=\left[\begin{array}{cc} 5&4\\8&1\end{array}\right]{\pmb y}$.
- (b) Solve the IVP $y_1' = 5y_1 + 4y_2$, $y_2' = 8y_1 + y_2$, $y_1(0) = 0$, $y_2(0) = 1$.

Solution.

- (a) Note that this is the homogeneous system corresponding to the previous problem. It therefore follows from our previous solution (we're using the former one) that $y_1=-\frac{1}{2}C_1e^{-3x}+C_2e^{9x}$ and $y_2=C_1e^{-3x}+C_2e^{9x}$ is the general solution of the homogeneous system. Alternatively. We can, of course, also use the latter solution to write $y_1=C_1e^{-3x}+C_2e^{9x}$ and $y_2=-2C_1e^{-3x}+C_2e^{9x}$. These are different ways to write the same general solution.
- (b) We already have the general solutions y_1 , y_2 to the two DEs. We need to determine the (unique) values of C_1 and C_2 to match the initial conditions: $y_1(0) = -\frac{1}{2}C_1 + C_2 \stackrel{!}{=} 0$, $y_2(0) = C_1 + C_2 \stackrel{!}{=} 1$ We solve these two equations and find $C_1 = \frac{2}{3}$ and $C_2 = \frac{1}{3}$. The unique solution to the IVP therefore is $y_1 = -\frac{1}{3}e^{-3x} + \frac{1}{3}e^{9x}$ and $y_2 = \frac{2}{3}e^{-3x} + \frac{1}{3}e^{9x}$.