The qualitative effects of damping

The motion of a mass on a spring (or the approximate motion of a pendulum), with damping taken into account, can be modeled by the DE

$$y'' + dy' + cy = 0$$

with c > 0 and $d \ge 0$. The term dy' models damping (e.g. friction, air resistance) proportional to the velocity y'.

The characteristic equation $r^2+dr+c=0$ has roots $\frac{1}{2}\Big(-d\pm\sqrt{d^2-4c}\,\Big)$.

The nature of the solutions depends on whether the **discriminant** $\Delta = d^2 - 4c$ is positive, negative, or zero.

Undamped. d=0. In that case, $\Delta < 0$. We get two complex roots $\pm i\omega$ with $\omega = \sqrt{c}$.

Solutions: $A\cos(\omega t) + B\sin(\omega t) = r\cos(\omega t - \alpha)$ where $(A, B) = r(\cos \alpha, \sin \alpha)$

These are oscillations with frequency ω and amplitude r.

Underdamped. d > 0, $\Delta < 0$. We get two complex roots $-\rho \pm i\omega$ with $-\rho = -d/2 < 0$.

Solutions:
$$e^{-\rho t}[A\cos(\omega t) + B\sin(\omega t)] = e^{-\rho t}[r\cos(\omega t - \alpha)]$$
 (\rightarrow 0 as $t \rightarrow \infty$)

These are oscillations with amplitude going to zero.

Critically damped. d > 0, $\Delta = 0$. We get one (double) real root $-\rho < 0$.

Solutions:
$$(A+Bt)e^{-\rho t}$$
 $(\to 0 \text{ as } t\to \infty)$

There are no oscillations. (Can you see why we cross the t-axis at most once?)

Overdamped. d>0, $\Delta>0$. We get two real roots $-\rho_1, -\rho_2<0$. [negative because c,d>0]

Solutions:
$$Ae^{-\rho_1 t} + Be^{-\rho_2 t}$$
 $(\to 0 \text{ as } t \to \infty)$

There are no oscillations. (Again, there is at most one crossing of the t-axis.)

Example 108. The motion of a mass on a spring is described by 5y'' + dy' + 2y = 0 with d > 0. For which value of d is the motion critically damped? Underdamped? Overdamped?

Solution. The characteristic roots are $\frac{1}{2}\left(-d\pm\sqrt{d^2-40}\right)$. The motion is critically damped if $d^2-40=0$. Equivalently, the motion is critically damped $d=\sqrt{40}$.

Consequently, the motion is underdamped if $d < \sqrt{40}$ (then we get complex roots and the solutions will involve oscillations), and it is overdamped if $d > \sqrt{40}$ (the roots are real and the solutions will not involve oscillations).

Example 109. The motion of a mass on a spring is described by my'' + 3y' + 2y = 0. For which value of m is the motion critically damped? Underdamped? Overdamped?

Solution. The characteristic roots are $\frac{1}{2}(-3\pm\sqrt{9-8m})$. The motion is critically damped if 9-8m=0. Equivalently, the motion is critically damped $m=\frac{9}{8}$.

Consequently, the motion is underdamped if $m > \frac{9}{8}$ (then we get complex roots and the solutions will involve oscillations), and it is overdamped if $m < \frac{9}{8}$ (the roots are real and the solutions will not involve oscillations).