Example 96. Determine the general solution of $y'' + 4y' + 4y = 7e^{-2x}$.

Solution. The homogeneous DE is y'' + 4y' + 4y = 0 (note that $D^2 + 4D + 4 = (D + 2)^2$) and the inhomogeneous part is $7e^{-2x}$.

	homogeneous DE	inhomogeneous part
characteristic roots	-2, -2	-2
solutions	e^{-2x}, xe^{-2x}	$x^{2}e^{-2x}$

This tells us that there exists a particular solution of the form $y_p = Ax^2 e^{-2x}$. To find the value of A, we plug into the DE.

$$y_p' = A(-2x^2 + 2x)e^{-2x}$$

$$y_p'' = A(4x^2 - 8x + 2)e^{-2x}$$

$$y_p'' + 4y_p' + 4y_p = 2Ae^{-2x} \stackrel{!}{=} 7e^{-2x}$$

It follows that $A=\frac{7}{2}$, so that $y_p=\frac{7}{2}x^2e^{-2x}$. Hence the general solution is

$$y(x) = \left(C_1 + C_2 x + \frac{7}{2}x^2\right)e^{-2x}.$$

Example 97. Consider the DE $y'' + 4y' + 4y = 2e^{3x} - 5e^{-2x}$.

- (a) What is the simplest form (with undetermined coefficients) of a particular solution?
- (b) Determine a particular solution using our results from Examples 95 and 96.
- (c) Determine the general solution.

Solution.

(a) Note that $D^2 + 4D + 4 = (D+2)^2$.

	homogeneous DE	inhomogeneous part
characteristic roots	-2, -2	3, -2
solutions	e^{-2x}, xe^{-2x}	e^{3x}, x^2e^{-2x}

Hence, there has to be a particular solution of the form $y_p = Ae^{3x} + Bx^2e^{-2x}$.

To find the (unique) values of A and B, we can plug into the DE. Alternatively, we can break the problem into two pieces as illustrated in the next part.

(b) Write the DE as $Ly=2e^{3x}-5e^{-2x}$ where $L=D^2+4D+4$. In Example 95 we found that $y_1=\frac{6}{25}e^{3x}$ satisfies $Ly_1=6e^{3x}$. Also, in Example 96 we found that $y_2=\frac{7}{2}x^2e^{-2x}$ satisfies $Ly_2=7e^{-2x}$.

By linearity, it follows that $L(Ay_1 + By_2) = ALy_1 + BLy_2 = 6Ae^{3x} + 7Be^{-2x}$.

To get a particular solution y_p of our DE, we need 6A=2 and 7B=-5.

Hence,
$$y_p = \frac{2}{6}y_1 - \frac{5}{7}y_2 = \frac{2}{25}e^{3x} - \frac{5}{2}x^2e^{-2x}$$
.

Comment. Of course, if we hadn't previously solved Examples 95 and 96, we could have plugged the result from the first part into the DE to determine the coefficients A and B. On the other hand, breaking the inhomogeneous part $(2e^{3x}-5e^{-2x})$ up into pieces (here, e^{3x} and e^{-2x}) can help keep things organized, especially when working by hand.

(c) The general solution is $\frac{2}{25}\,e^{3x}-\frac{5}{2}x^2e^{-2x}+(C_1+C_2x)e^{2x}.$

Example 98. Consider the DE $y'' - 2y' + y = 5\sin(3x)$.

- (a) What is the simplest form (with undetermined coefficients) of a particular solution?
- (b) Determine a particular solution.
- (c) Determine the general solution.

Solution. Note that $D^2 - 2D + 1 = (D - 1)^2$.

	homogeneous DE	inhomogeneous part
characteristic roots	1, 1	$\pm 3i$
solutions	e^x, xe^x	$\cos(3x), \sin(3x)$

- (a) This tells us that there exists a particular solution of the form $y_p = A\cos(3x) + B\sin(3x)$.
- (b) To find the values of A and B, we plug into the DE.

$$y_p' = -3A\sin(3x) + 3B\cos(3x)$$

$$y_p'' = -9A\cos(3x) - 9B\sin(3x)$$

$$y_p'' - 2y_p' + y_p = (-8A - 6B)\cos(3x) + (6A - 8B)\sin(3x) \stackrel{!}{=} 5\sin(3x)$$

Equating the coefficients of $\cos(x)$, $\sin(x)$, we obtain the two equations -8A - 6B = 0 and 6A - 8B = 5.

Solving these, we find $A = \frac{3}{10}$, $B = -\frac{2}{5}$. Accordingly, a particular solution is $y_p = \frac{3}{10}\cos(3x) - \frac{2}{5}\sin(3x)$.

(c) The general solution is $y(x) = \frac{3}{10}\cos(3x) - \frac{2}{5}\sin(3x) + (C_1 + C_2x)e^x$.

Example 99. Consider the DE $y'' - 2y' + y = 5e^{2x}\sin(3x) + 7xe^x$. What is the simplest form (with undetermined coefficients) of a particular solution?

Solution. Since $D^2-2D+1=(D-1)^2$, the characteristic roots are 1,1. The roots for the inhomogeneous part are $2\pm 3i,1,1$. Hence, there has to be a particular solution of the form $y_p=A_1\,e^{2x}\cos(3x)+A_2\,e^{2x}\sin(3x)+A_3\,x^2e^x+A_4\,x^3e^x$.

(We can then plug into the DE to determine the (unique) values of the coefficients A_1, A_2, A_3, A_4 .)

Example 100. (homework) What is the shape of a particular solution of $y'' + 4y' + 4y = x \cos(x)$?

Solution. The characteristic roots are -2, -2. The roots for the inhomogeneous part are $\pm i, \pm i$. Hence, there has to be a particular solution of the form $y_p = (A_1 + A_2 x)\cos(x) + (A_3 + A_4 x)\sin(x)$.

Continuing to find a particular solution. To find the value of the A_j 's, we plug into the DE.

$$y_p' = (A_2 + A_3 + A_4x)\cos(x) + (A_4 - A_1 - A_2x)\sin(x)$$

$$y_p'' = (2A_4 - A_1 - A_2x)\cos(x) + (-2A_2 - A_3 - A_4x)\sin(x)$$

$$y_p'' + 4y_p' + 4y_p = (3A_1 + 4A_2 + 4A_3 + 2A_4 + (3A_2 + 4A_4)x)\cos(x)$$

$$+(-4A_1-2A_2+3A_3+4A_4+(-4A_2+3A_4)x)\sin(x) \stackrel{!}{=} x\cos(x).$$

Equating the coefficients of $\cos(x)$, $x\cos(x)$, $\sin(x)$, $x\sin(x)$, we get the equations $3A_1+4A_2+4A_3+2A_4=0$, $3A_2+4A_4=1$, $-4A_1-2A_2+3A_3+4A_4=0$, $-4A_2+3A_4=0$.

Solving (this is tedious!), we find $A_1=-\frac{4}{125}$, $A_2=\frac{3}{25}$, $A_3=-\frac{22}{125}$, $A_4=\frac{4}{25}$.

Hence,
$$y_p = \left(-\frac{4}{125} + \frac{3}{25}x\right)\cos(x) + \left(-\frac{22}{125} + \frac{4}{25}x\right)\sin(x)$$
.