Review. If $r=a\pm bi$ are characteristic roots of a homogeneous linear DE with constant coefficients, then the corresponding solutions are $e^{ax}\cos(bx)$ and $e^{ax}\sin(bx)$.

This follows from Euler's identity: $e^{ix} = \cos(x) + i\sin(x)$

Example 90. Determine the general solution of y'' - 4y' + 13y = 0 using only real numbers.

Solution. The characteristic polynomial $p(D) = D^2 - 4D + 13$ has roots 2 + 3i, 2 - 3i.

[We can use the quadratic formula to find these roots as $\frac{4 \pm \sqrt{4^2 - 4 \cdot 13}}{2} = \frac{4 \pm \sqrt{-36}}{2} = \frac{4 \pm 6i}{2} = 2 \pm 3i$.]

Hence, the general solution in real form is $y(x) = C_1 e^{2x} \cos(3x) + C_2 e^{2x} \sin(3x)$.

Note. $e^{(2\pm 3i)x} = e^{2x}e^{\pm 3ix} = e^{2x}(\cos(3x) \pm i\sin(3x))$

Example 91. Find the general solution of $y^{(7)} + 8y^{(6)} + 42y^{(5)} + 104y^{(4)} + 169y^{(4)} = 0$.

Use the fact that -2 + 3i is a repeated characteristic root.

Solution. The characteristic polynomial $p(D) = D^3(D^2 + 4D + 13)^2$ has roots $0, 0, 0, -2 \pm 3i, -2 \pm 3i$.

[Since -2+3i is a root so must be -2-3i. Repeating them once, together with 0,0,0 results in 7 roots.] Hence, the general solution is $(A+Bx+Cx^2)+(D+Ex)\,e^{-2x}\cos(3x)+(F+Gx)e^{-2x}\sin(3x)$.

Example 92. (preview) Determine the general solution of y'' + 4y = 12x. Hint: 3x is a solution.

Solution. Here, $p(D) = D^2 + 4$. Because of the hint, we know that a particular solution is $y_p = 3x$.

The homogeneous DE p(D)y=0 has solutions $y_1=\cos(2x)$ and $y_2=\sin(2x)$. [Make sure this is clear!

Therefore, the general solution to the original DE is $y_p + C_1 y_1 + C_2 y_2 = 3x + C_1 \cos(2x) + C_2 \sin(2x)$.

Just to make sure. The DE in operator notation is Ly = f(x) with $L = D^2 + 4$ and f(x) = 12x.

Next. How to find the particular solution $y_p = 3x$ ourselves.

Example 93. (review) Consider the function $y(x) = 7x - 5x^2e^{4x}$. Find an operator p(D) such that p(D)y = 0.

Comment. This is the same as determining a homogeneous linear DE with constant coefficients solved by y(x).

Solution. In order for y(x) to be a solution of p(D)y=0, the characteristic roots must include 0,0,4,4,4. The simplest choice for p(D) thus is $p(D)=D^2(D-4)^3$.

Inhomogeneous linear DEs: The method of undetermined coefficients

The **method of undetermined coefficients** allows us to solve certain inhomogeneous linear DEs Ly = f(x) with constant coefficients.

It works if f(x) is itself a solution of a homogeneous linear DE with constant coefficients (see previous example).

Example 94. Determine the general solution of y'' + 4y = 12x.

Solution. The DE is p(D)y = 12x with $p(D) = D^2 + 4$, which has roots $\pm 2i$. Thus, the general solution is $y(x) = y_p(x) + C_1\cos(2x) + C_2\sin(2x)$. It remains to find a particular solution y_p .

Since $D^2 \cdot (12x) = 0$, we apply D^2 to both sides of the DE to get the **homogeneous** DE $D^2(D^2 + 4) \cdot y = 0$.

Its general solution is $C_1 + C_2 x + C_3 \cos(2x) + C_4 \sin(2x)$ and y_p must be of this form. Indeed, there must be a particular solution of the simpler form $y_p = C_1 + C_2 x$ (because $C_3 \cos(2x) + C_4 \sin(2x)$ can be added to any y_p).

It remains to find appropriate values C_1, C_2 such that $y_p'' + 4y_p = 12x$. Since $y_p'' + 4y_p = 4C_1 + 4C_2x$, comparing coefficients yields $4C_1 = 0$ and $4C_2 = 12$, so that $C_1 = 0$ and $C_2 = 3$. In other words, $y_p = 3x$.

Therefore, the general solution to the original DE is $y(x) = 3x + C_1\cos(2x) + C_2\sin(2x)$.

Example 95. Determine the general solution of $y'' + 4y' + 4y = 6e^{3x}$.

Solution. The DE is $p(D)y=e^{3x}$ with $p(D)=D^2+4D+4=(D+2)^2$, which has roots -2,-2. Thus, the general solution is $y(x)=y_p(x)+(C_1+C_2x)e^{-2x}$. It remains to find a particular solution y_p .

Since $(D-3)e^{3x}=0$, we apply (D-3) to the DE to get the homogeneous DE $(D-3)(D+2)^2y=0$.

Its general solution is $(C_1 + C_2 x)e^{-2x} + C_3 e^{3x}$ and y_p must be of this form. Indeed, there must be a particular solution of the simpler form $y_p = Ae^{3x}$ (we write A instead of C_3 but that makes no difference).

To determine the value of A, we plug into the original DE: $y_p'' + 4y_p' + 4y_p = (9+4\cdot 3+4)Ae^{3x} \stackrel{!}{=} 6e^{3x}$. Hence, A = 6/25. Therefore, the general solution to the original DE is $y(x) = (C_1 + C_2x)e^{-2x} + \frac{6}{25}e^{3x}$.

Solution. (same, just shortened) In schematic form:

	homogeneous DE	inhomogeneous part
characteristic roots	-2, -2	3
solutions	e^{-2x}, xe^{-2x}	e^{3x}

This tells us that there exists a particular solution of the form $y_p = Ae^{3x}$. Then the general solution is

$$y = y_p + C_1 e^{-2x} + C_2 x e^{-2x}.$$

So far, we didn't need to do any calculations (besides determining the roots)! However, we still need to determine the value of A (by plugging into the DE as above), namely $A = \frac{6}{25}$. For this reason, this approach is often called the **method of undetermined coefficients**.

We found the following recipe for solving nonhomogeneous linear DEs with constant coefficients:

That approach works for p(D)y = f(x) whenever the right-hand side f(x) is the solution of some homogeneous linear DE with constant coefficients: q(D)f(x) = 0

(method of undetermined coefficients) To find a particular solution y_p to an inhomogeneous linear DE with constant coefficients p(D)y = f(x):

- Determine the characteristic roots of the homogeneous DE and corresponding solutions.
- Find the roots of q(D) so that q(D)f(x)=0. [This does not work for all f(x).] Let $y_{p,1},y_{p,2},...$ be the additional solutions (when the roots are added to those of the homogeneous DE).

Then there exist (unique) C_i so that

$$y_p = A_1 y_{p,1} + A_2 y_{p,2} + \dots$$

To find the values A_i , we need to plug y_p into the original DE.

Why? To see that this approach works, note that applying q(D) to both sides of the inhomogeneous DE p(D)y=f(x) results in q(D)p(D)y=0 which is homogeneous. We already know that the solutions to the homogeneous DE can be added to any particular solution y_p . Therefore, we can focus only on the additional solutions coming from the roots of q(D).

For which f(x) does this work? By Theorem 77, we know exactly which f(x) are solutions to homogeneous linear DEs with constant coefficients: these are linear combinations of exponentials $x^j e^{rx}$ (which includes $x^j e^{ax} \cos(bx)$ and $x^j e^{ax} \sin(bx)$).