Example 87. Solve the initial value problem y'''=4y''-4y' with y(0)=4, y'(0)=0, y''(0)=-4.

Solution. The characteristic polynomial $p(D) = D^3 - 4D^2 + 4D = D(D-2)^2$ has roots 0, 2, 2.

We conclude that the general solution is $y(x) = C_1 + (C_2 + C_3 x)e^{2x}$.

From this formula for y(x), we compute $y'(x) = (2C_2 + C_3 + 2C_3x)e^{2x}$ and $y''(x) = 4(C_2 + C_3 + C_3x)e^{2x}$. The initial conditions therefore result in the equations $C_1 + C_2 = 4$, $2C_2 + C_3 = 0$, $4C_2 + 4C_3 = -4$.

Solving these (start with the last two equations) we find $C_1 = 3$, $C_2 = 1$, $C_3 = -2$.

Hence the unique solution to the IVP is $y(x) = 3 + (1 - 2x)e^{2x}$.

Review. A linear DE of order n is of the form

$$y^{(n)} + P_{n-1}(x) y^{(n-1)} + \dots + P_1(x)y' + P_0(x)y = f(x).$$

The general solution of linear DE always takes the form

$$y(x) = y_p(x) + C_1 y_1(x) + ... + C_n y_n(x),$$

where y_p is any solution (called a **particular solution**) and $y_1, y_2, ..., y_n$ are solutions to the corresponding **homogeneous** linear DE.

- In terms of $D = \frac{\mathrm{d}}{\mathrm{d}x}$, the DE becomes: Ly = f(x) with $L = D^n + P_{n-1}(x)D^{n-1} + \ldots + P_1(x)D + P_0(x)$.
- The inclusion of the f(x) term makes Ly = f(x) an **inhomogeneous** linear DE. The corresponding **homogeneous** DE is Ly = 0 (note that the zero function y(x) = 0 is a solution of Ly = 0).
- L is called a linear differential operator.
 - o $L(C_1y_1 + C_1y_2) = C_1Ly_1 + C_2Ly_2$ (linearity)

 Comment. If you are familiar with linear algebra, think of L replaced with a matrix A and y_1, y_2 replaced with vectors v_1, v_2 . In that case, the same linearity property holds.
 - o So, if y_1 solves Ly = f(x), and y_2 solves Ly = g(x), then $C_1y_1 + C_2y_2$ solves the differential equation $Ly = C_1f(x) + C_2g(x)$.
 - o In particular, if y_1 and y_2 solve the homogeneous DE (then f(x)=0 and g(x)=0), then so does any linear combination $C_1y_1+C_2y_2$. This explains why, for any homogeneous linear DE of order n, there are n solutions $y_1, y_2, ..., y_n$ such that the general solution is $y(x)=C_1y_1(x)+...+C_ny_n(x)$. Moreover, in that case, if we have a **particular solution** y_p of the inhomogeneous DE Ly=f(x), then $y_p+C_1y_1+...+C_ny_n$ is the general solution of Ly=f(x).

Real form of complex solutions

Let's recall some basic facts about complex numbers:

- Every complex number can be written as z = x + iy with real x, y.
- Here, the imaginary unit *i* is characterized by solving $x^2 = -1$.

Important observation. The same equation is solved by -i. This means that, algebraically, we cannot distinguish between +i and -i.

• The **conjugate** of z = x + iy is $\bar{z} = x - iy$.

Important comment. Since we cannot algebraically distinguish between $\pm i$, we also cannot distinguish between z and \bar{z} . That's the reason why, in problems involving only real numbers, if a complex number z=x+iy shows up, then its **conjugate** $\bar{z}=x-iy$ has to show up in the same manner. With that in mind, have another look at the examples below.

• The **real part** of z = x + iy is x and we write Re(z) = x.

Likewise the **imaginary part** is Im(z) = y.

Observe that $\mathrm{Re}(z)=\frac{1}{2}(z+\bar{z})$ as well as $\mathrm{Im}(z)=\frac{1}{2i}(z-\bar{z}).$

Theorem 88. (Euler's identity) $e^{ix} = \cos(x) + i\sin(x)$

Proof. Observe that both sides are the (unique) solution to the IVP y' = iy, y(0) = 1.

[Check that by computing the derivatives and verifying the initial condition! As we did in class.]

On lots of T-shirts. In particular, with $x=\pi$, we get $e^{\pi i}=-1$ or $e^{i\pi}+1=0$ (which connects the five fundamental constants).

Comment. It follows that $\cos(x) = \operatorname{Re}(e^{ix}) = \frac{1}{2}(e^{ix} + e^{-ix})$ and $\sin(x) = \operatorname{Im}(e^{ix}) = \frac{1}{2i}(e^{ix} - e^{-ix})$.

If $r = a \pm bi$ are characteristic roots of a homogeneous linear DE with constant coefficients, then the corresponding solutions are $e^{ax}\cos(bx)$ and $e^{ax}\sin(bx)$.

```
Why? e^{(a \pm bi)x} = e^{ax}e^{\pm bix} = e^{ax}(\cos(bx) \pm i\sin(bx))
```

Note that if we, for instance, add $e^{(a+bi)x} + e^{(a-bi)x}$ (that's twice the real part), this will give us $2e^{ax}\cos(bx)$.

Example 89. Determine the general solution of y'' + y = 0.

Solution. (complex numbers in general solution) The characteristic polynomial is $D^2 + 1$ which has no roots over the reals. Over the complex numbers, by definition, the roots are i and -i.

So the general solution is $y(x) = C_1 e^{ix} + C_2 e^{-ix}$.

Solution. (real general solution) On the other hand, we easily check that $y_1 = \cos(x)$ and $y_2 = \sin(x)$ are two solutions. Hence, the general solution can also be written as $y(x) = D_1 \cos(x) + D_2 \sin(x)$.

Important comment. That we have these two different representations is a consequence of Euler's identity (Theorem 88) by which $e^{\pm ix} = \cos(x) \pm i \sin(x)$.

On the other hand, $\cos(x)=\frac{1}{2}(e^{ix}+e^{-ix})$ and $\sin(x)=\frac{1}{2i}(e^{ix}-e^{-ix}).$

[Recall that the first formula is an instance of $\text{Re}(z) = \frac{1}{2}(z+\bar{z})$ and the second of $\text{Im}(z) = \frac{1}{2i}(z-\bar{z})$.]