Review. A homogeneous linear DE with constant coefficients is of the form p(D)y=0, where p(D) is the characteristic polynomial polynomial. For each characteristic root r of multiplicity k, we get the k solutions x^je^{rx} for j=0,1,...,k-1.

Example 80. (review) Find the general solution of y''' + 2y'' + y' = 0.

Solution. The characteristic polynomial $p(D) = D(D+1)^2$ has roots 0, 1, 1.

Hence, the general solution is $A + (B + Cx)e^x$.

Example 81. Determine the general solution of y''' - 3y'' + 3y' - y = 0.

Solution. The characteristic polynomial $p(D) = D^3 - 3D^2 + 3D - 1 = (D-1)^3$ has roots 1, 1, 1.

By Theorem 77, the general solution is $y(x) = (C_1 + C_2x + C_3x^2)e^x$.

Comment. The coefficients 1, 2, 1 and 1, 3, 3, 1 in $(D+1)^2$ and $(D+1)^3$ are known as binomial coefficients. They can be arranged as rows in Pascal's triangle where the next row would be 1, 4, 6, 4, 1.

Example 82. Determine the general solution of y''' - y'' - 5y' - 3y = 0.

Solution. The characteristic polynomial $p(D) = D^3 - D^2 - 5D - 3 = (D-3)(D+1)^2$ has roots 3, -1, -1. Hence, the general solution is $y(x) = C_1 e^{3x} + (C_2 + C_3 x)e^{-x}$.

Example 83. Determine the general solution of $y^{(6)} = 3y^{(5)} - 4y'''$.

Solution. This DE is of the form p(D) y=0 with $p(D)=D^6-3D^5+4D^3=D^3(D-2)^2(D+1)$.

The characteristic roots are 2, 2, 0, 0, 0, -1.

By Theorem 77, the general solution is $y(x) = (C_1 + C_2 x)e^{2x} + C_3 + C_4 x + C_5 x^2 + C_6 e^{-x}$.

Example 84. Consider the function $y(x) = 3xe^{-2x} + 7e^x$. Determine a homogeneous linear DE with constant coefficients of which y(x) is a solution.

Solution. In order for y(x) to be a solution of p(D)y=0, the characteristic roots must include -2,-2,1.

The simplest choice for p(D) thus is $p(D) = (D+2)^2(D-1)$.

Note. For many purposes it is best to leave the DE as $(D+2)^2(D-1)y=0$. On the other hand, if we wanted to, we could multiply out $(D+2)^2(D-1)=D^3+3D^2-4$ to write the DE in the more classical form y'''+3y''-4y=0.

Example 85. Consider the function $y(x) = 3xe^{-2x} + 7x^3$. Determine a homogeneous linear DE with constant coefficients of which y(x) is a solution.

Solution. In order for y(x) to be a solution of p(D)y=0, the characteristic roots must include -2,-2,0,0,0,0.

The simplest choice for p(D) thus is $p(D) = (D+2)^2D^4$.

Note. Optionally, we can expand $(D+2)^2D^4 = D^6 + 4D^5 + 4D^4$ to write the DE as $y^{(6)} + 4y^{(5)} + 4y^{(4)} = 0$.

The following gives a preview of how we are going to solve inhomogeneous linear differential equations.

Example 86. (preview) Determine the general solution of y'' + 4y' + 4y = 5.

Hint: Look for a constant solution.

Solution. We know how to solve the corresponding homogeneous DE: y''+4y'+4y=0. Namely, since the characteristic polynomial is $p(D)=D^2+4D+4=(D+2)^2$ we get that e^{-2x} and xe^{-2x} solve the homogeneous DE. It follows that our original inhomogeneous DE has the general solution

$$y(x) = y_p(x) + C_1 e^{-2x} + C_2 x e^{-2x}$$

where $y_p(x)$ is a particular solution that we still need to find.

Because of the hint, we look for a particular solution of the form $y_p = A$ where A is a constant. If we plug this into the (original) DE we get $0+4\cdot 0+4\cdot A=5$. This means that we indeed get a solution if $A=\frac{5}{4}$. Hence, the general solution of the original DE is

$$y(x) = \frac{5}{4} + C_1 e^{-2x} + C_2 x e^{-2x}.$$

Just to make sure. The DE in operator notation is Ly = f(x) with $L = D^2 + 4D + 4$ and f(x) = 5. Next. How to find such particular solutions in all cases (and without hints).

42