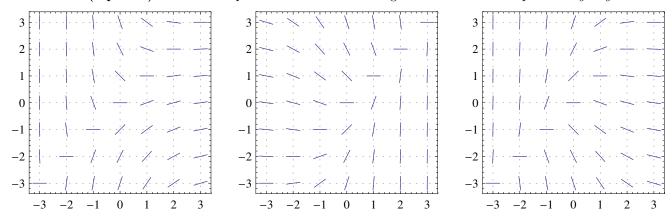
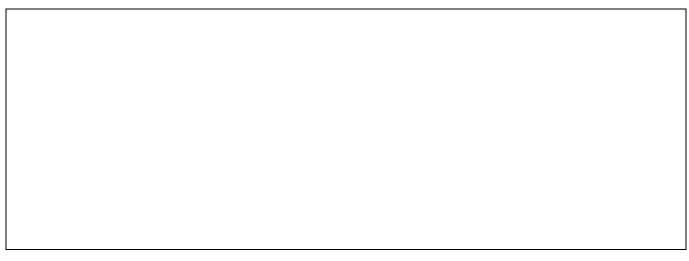
Midterm #1

Please print your name:


No notes, calculators or tools of any kind are permitted. There are 30 points in total. You need to show work to receive full credit.

Good luck!


Problem 1. (8 points) A tank holds 10gal of brine containing 40lb of salt. It is filled with brine (containing 5lb/gal salt) at a rate of 3gal/min. At the same time, well-mixed solution flows out at a rate of 2gal/min. How much salt is in the tank after t minutes?

Problem 2. (3 points) In the differential equation $(x+2y)\frac{\mathrm{d}y}{\mathrm{d}x} = \tan\left(-\frac{y}{x^2}\right)$ substitute $u = \frac{y}{x^2}$.			
What is the resulting differential equation for u ?	x^2 No need to simplify! Do not attempt to solve!		
Problem 3. (3 points) Find the general solution to the differential equation g	y'' + y' = 2y.		
Problem 4. (3 points) Consider the initial value problem $(y^2 - 1)y' + \sin(x)$ and b can we guarantee existence and uniqueness of a (local) solution?	$=x^2$, $y(a)=b$. For which values of a		
Problem 5. (3 points) A rising population is modeled by the equation $\frac{dP}{dt}$ questions without solving the differential equation.	$=300P-3P^2$. Answer the following		
(a) When the population size stabilizes in the long term, how big will the po	opulation be?		
(b) What is the population size when it is growing the fastest?			

Problem 6. (2 points) Circle the slope field below which belongs to the differential equation $e^x y' = y - x$.

Problem 7. (4 points) Solve the initial value problem $\frac{dy}{dx} + y^2 \sin(x) = 0$ with y(0) = 3.

Problem 8. (4 points) Consider the IVP $\frac{dy}{dx} - y^2 = x$ with y(1) = -1. Approximate the solution y(x) for $x \in [1, 2]$ using Euler's method with 2 steps. In particular, what is the approximation of y(2)?

(extra scratch paper)