Midterm #1

Please print your name:

No notes, calculators or tools of any kind are permitted. There are 30 points in total. You need to show work toreceive full credit.

Good luck!

Problem 1. (8 points) A tank holds 10gal of brine containing 40lb of salt. It is filled with brine (containing 5lb/gal) salt) at a rate of 3gal/min. At the same time, well-mixed solution flows out at a rate of 2gal/min. How much salt is in the tank after *t* minutes?

Solution. Let $x(t)$ denote the amount of salt (in lb) in the tank after time t (in min).

At time *t*, the concentration of salt (in lb/gal) in the tank is $\frac{x(t)}{V(t)}$ where $V(t) = 10 + (3-2)t = 10 + t$ is the volume (in

gal) in the tank.
In the time interval $[t, t + \Delta t]$: $\Delta x \approx 3 \cdot 5 \cdot \Delta t - 2 \cdot \frac{x(t)}{V(t)} \cdot \Delta t$.

Hence, $x(t)$ solves the IVP $\frac{dx}{dt} = 15 - \frac{2}{10+t}x$ with $x(0) = 40$. Since this is a linear DE, we can solve it as follows:

- We write it in the form $\frac{dx}{dt} + \frac{2}{10+t}x = 15$.
- The integrating factor is $f(t) = \exp\left(\int \frac{2}{10 + t} dt\right) = \exp(2\ln(10 + t)) = (10 + t)^2$. .
- Multiply the (rewritten) DE by $f(t) = (10 + t)^2$ to get $(10 + t)^2 \frac{dx}{dt} + 2(10 + t)x = 15(10 + t)^2$. $=\frac{d}{dt}[(10+t)^2x]$ $\frac{d^{2}dx}{dt} + 2(10+t)x = 15(10+t)^{2}.$
 $\frac{d}{dt}[(10+t)^{2}x]$.
- Integrate both sides to get $(10 + t)^2 x = 15 \int (10 + t)^2 dt = 5(10 + t)^3 + C$.

Hence the general solution to the DE is $x(t) = \frac{5(10 + t)^3 + C}{(10 + t)^2}$. Using $x(0) = 40$, v $\frac{(10+t)^3+C}{(10+t)^2}$. Using $x(0) = 40$, we find $40 = \frac{5000+C}{100}$ from which we $\frac{30+C}{100}$ from which we conclude that $C = -1000$.

After *t* minutes, the tank therefore contains $x(t) = \frac{5(10 + t)^3 - 1000}{(10 + t)^2}$ pounds of salt.

(Depending on preference, we can also write $\frac{5(10+t)^3 - 1000}{(10+t)^2} = 5(10+t) - \frac{1000}{(10+t)^2}$.) $(10 + t)^{2}$.)

Problem 2. (3 **points)** In the differential equation $(x+2y)\frac{dy}{dx} = \tan\left(-\frac{y}{x^2}\right)$ substitute $u = \frac{y}{x^2}$. $\left(\frac{y}{x^2}\right)$ substitute $u = \frac{y}{x^2}$. x^2 2^{\cdot} . What is the resulting differential equation for *u*? No need to simplify! Do not attempt to solve!

Solution. If $u = \frac{y}{x^2}$, then $y = ux^2$ and $\frac{dy}{dx} = x^2 \frac{du}{dx} + 2ux$. $\frac{du}{dx} + 2ux.$ Hence, the resulting differential equation for *u* is $(x+2ux^2)\left(x^2\frac{du}{dx}+2ux\right) = \tan(-u)$. $\frac{du}{dx} + 2ux$ = tan(*-u*).

Problem 3. (3 points) Find the general solution to the differential equation $y'' + y' = 2y$.

Solution. We look for solutions of the form e^{rx} . .

Plugging e^{rx} into the DE, we get $r^2e^{rx} + re^{rx} = 2e^{rx}$ which simplifies to $r^2 + r - 2 = 0$.

 $r^2 + r - 2 = 0$ has the two solutions $r = \frac{-1 \pm \sqrt{1 - 4 \cdot (-2)}}{2} = \frac{-1 \pm 3}{2} = 1, -2.$

This means we found the two solutions $y_1 = e^x$, $y_2 = e^{-2x}$. .

The general solution to the DE is $Ae^x + Be^{-2x}$. .

Problem 4. (3 **points**) Consider the initial value problem $(y^2 - 1)y' + \sin(x) = x^2$, $y(a) = b$. For which values of *a* and *b* can we guarantee existence and uniqueness of a (local) solution?

Solution. Let us write $y' = f(x, y)$ with $f(x, y) = \frac{x^2 - \sin(x)}{x^2 - 1}$. Then $\frac{\partial}{\partial x} f(x, y) =$ $\frac{-\sin(x)}{y^2-1}$. Then $\frac{\partial}{\partial y} f(x, y) = -\frac{x^2 - \sin(x)}{(y^2-1)^2} \cdot 2y$. $\frac{(y^2-1)^2}{(y^2-1)^2} \cdot 2y.$ Both $f(x, y)$ and $\frac{\partial}{\partial y} f(x, y)$ are continuous for all (x, y) with $y \neq \pm 1$.

Hence, if $b \neq \pm 1$, then the IVP locally has a unique solution by the existence and uniqueness theorem.

Problem 5. (3 **points**) A rising population is modeled by the equation $\frac{dP}{dt} = 300P - 3P^2$. Answer the following questions without solving the differential equation.

- (a) When the population size stabilizes in the long term, how big will the population be?
- (b) What is the population size when it is growing the fastest?

Solution.

(a) Once the population reaches a stable level in the long term, we have $\frac{dP}{dt} = 0$ (no change in population size).

Hence, $0 = 300P - 3P^2 = 3P(100 - P)$ which implies that $P = 0$ or $P = 100$. Since the population is rising, it will approach 100 in the long term.

(b) This is asking when $\frac{dP}{dt}$ (the population growth) is maximal.

The DE is telling us that this growth is $f(P) = 300P - 3P^2$. This a parabola that opens to the bottom. From Calculus, we know that it has a global maximum when $f'(P) = 0$.

 $f'(P) = 300 - 6P = 0$ leads to $P = 50$.

Thus, the population is growing the fastest when its size is 50.

Problem 6. (2 points) Circle the slope field below which belongs to the differential equation $e^x y' = y - x$.

Solution. A good point to carefully consider is $(1,3)$. By the DE, a solution passing through that point has slope y' *0* satisfying $e^1 y' = 3 - 1$. Equivalently, $y' = 2/e > 0$. The only plot compatible with that is the last one.

Of course, we can arrive at the same conclusion based on other points.

Problem 7. (4 **points)** Solve the initial value problem $\frac{dy}{dx} + y^2 \sin(x) = 0$ with $y(0) = 3$.

Solution. This DE is separable:

$$
\frac{dy}{y^2} = -\sin(x) dx \implies \frac{-1}{y} = \cos(x) + C \implies y = \frac{-1}{\cos(x) + C}.
$$

Using $y(0) = 3$ in $\frac{-1}{y} = \cos(x) + C$, we get $-\frac{1}{3} = 1 + C$ from which we conclude that $C = -\frac{4}{3}$. 3° Thus, the unique solution is $y = \frac{-1}{\sqrt{1-4}} = \frac{3}{4-3\cos(x)}$. $\frac{-1}{\cos(x) - \frac{4}{3}} = \frac{3}{4 - 3\cos(x)}.$ $4-3\cos(x)$.

Problem 8. (4 points) Consider the IVP $\frac{dy}{dx} - y^2 = x$ with $y(1) = -1$. Approximate the solution $y(x)$ for $x \in [1, 2]$ using Euler's method with 2 steps. In particular, what is the approximation of $y(2)$?

Solution. The step size is $h = \frac{2-1}{2} = \frac{1}{2}$. We to put the DE into t ¹/₂. We to put the DE into the form $y' = f(x, y)$ by rewriting it as $\frac{dy}{dx} = x + y^2$. . We therefore apply Euler's method with $f(x, y) = x + y^2$:

$$
x_0 = 1 \t y_0 = -1
$$

\n
$$
x_1 = \frac{3}{2} \t y_1 = y_0 + h f(x_0, y_0) = -1 + \frac{1}{2} \cdot [1 + (-1)^2] = 0
$$

\n
$$
x_2 = 2 \t y_2 = y_1 + h f(x_1, y_1) = 0 + \frac{1}{2} \cdot \left[\frac{3}{2} + 0^2 \right] = \frac{3}{4}
$$

In particular, the approximation for $y(2)$ is $y_2 = \frac{3}{4}$. 4 .

.

(extra scratch paper)