Example 123. (Halloween scare!) Let $a = b$. Then $a^2 = ab$, so $a^2 + a^2 = a^2 + ab$ or $2a^2 = a^2 + ab$. Hence, $2a^2 - 2ab = a^2 - ab$ or $2(a^2 - ab) = a^2 - ab$. Cancelling, we arrive at $2 = 1$.

[Can you see the foul but disguised division by zero?!]

Example 124. Consider the following system of initial value problems:

$$
y_1''' = 2y_1'' - 3y_1 + 7y_2
$$

\n $y_2'' = 4y_1' + y_2' + 5y_2$ $y_1(0) = 2$, $y_1'(0) = 3$, $y_1''(0) = 4$, $y_2(0) = -1$, $y_2'(0) = 1$

Write it as a first-order initial value problem in the form $\bm{y}'\!=\!M\bm{y}$, $\bm{y}(0)\!=\bm{y}_0$.

 ${\bf Solution.}$ Introduce $y_3\!=\!y_1',\ y_4\!=\!y_1''$ and $y_5\!=\!y_2'$. Then, the given system translates into

Solving systems of differential equations

Example 125. Determine the general solution to $y'_{1} = 5y_{1} + 4y_{2} + e^{2x}$, $y'_{2} = 8y_{1} + y_{2}$.

Solution. From the second equation it follows that $y_1 = \frac{1}{8}(y_2' - y_2)$. Using this in the **Solution.** From the second equation it follows that $y_1 = \frac{1}{8}(y_2' - y_2)$. Using this in the first equation, we get $\frac{1}{2}(y_1' - y_1') = \frac{5}{8}(y_1' - y_1') + 4y_1 + 2x$. After multiplying with 8, this is $y'' - y' = 5(y_1' - y_1) + 2y$ $\frac{1}{8}(y''_2 - y'_2) = \frac{5}{8}(y'_2 - y_2) + 4y_2 + e^{2x}$. Afte $\frac{5}{8}(y_2'-y_2)+4y_2+e^{2x}$. After multiplying with 8, this is $y_2''-y_2'=5(y_2'-y_2)+32y_2+8e^{2x}$. Simplified, this is $y_2'' - 6y_2' - 27y_2$ $=$ $8e^{2x}$, which is an inhomogeneous linear DE with constant coefficients which we know how to solve:

 \bullet Since the characteristic roots of the homogeneous DE are -3 , 9, while the characteristic root for the inhomogeneous part is 2 , there must be a particular solution of the form $y_p = C e^{2x}.$ Plugging this y_p into the DE, we get $y_p''-6y_p'-27y_p=(4-6\cdot 2-27)Ce^{2x}=-35Ce^{2x}\overset{!}{=}8e^{2x}.$ Hence, $C=-\frac{8}{35}.$ 35 .

 \bullet We therefore obtain $y_2\!=\!-\frac{8}{35}e^{2x}+C_1e^{-3x}+C_2e^{9x}$ as the general solution to the inhomogeneous DE. We can then determine y_1 as

$$
y_1 = \frac{1}{8}(y_2' - y_2)
$$

= $\frac{1}{8} \left(-\frac{16}{35}e^{2x} - 3C_1e^{-3x} + 9C_2e^{9x} + \frac{8}{35}e^{2x} - C_1e^{-3x} - C_2e^{9x} \right)$
= $-\frac{1}{35}e^{2x} - \frac{1}{2}C_1e^{-3x} + C_2e^{9x}.$

 ${\bf Solution.}$ (alternative) We can also start with $y_2\!=\!\frac14 y'_1\!-\!\frac54 y_1\!-\!\frac14 e^{2x}$ (from the first equation), although the algebra will require a little more work. In that case, we have $y_2'=\frac{1}{4}y_1''-\frac{5}{4}y_1'-\frac{1}{2}e^{2x}$. Using this in the second equation, we get $\frac{1}{4}y_1'' - \frac{5}{4}y_1' - \frac{1}{2}e^{2x} = 8y_1 + \frac{1}{4}y_1' - \frac{5}{4}y_1 - \frac{1}{4}e^{2x}$. Simplified, this is $y''_1 - 6y'_1 - 27y_1$ $=$ e^{2x} , which is an inhomogeneous linear DE with constant coefficients which know how to solve:

- Since the characteristic roots of the homogeneous DE are -3 , 9, while the characteristic root for the inhomogeneous part is 2, there must be a particular solution of the form $y_p = C e^{2x}.$ Plugging this y_p into the DE, we get $y_p''-6y_p'-27y_p=(4-6\cdot 2-27)Ce^{2x}=-35Ce^{2x}\stackrel{!}{=}e^{2x}.$ Hence, $C=-\frac{1}{35}.$.
- \bullet We therefore obtain $y_1\!=\!-\frac{1}{35}e^{2x}+C_1e^{-3x}+C_2e^{9x}$ as the general solution to the inhomogeneous DE.

We can then determine y_2 as

$$
y_2 = \frac{1}{4}y_1' - \frac{5}{4}y_1 - \frac{1}{4}e^{2x}
$$

= $\frac{1}{4}\left(-\frac{2}{35}e^{2x} - 3C_1e^{-3x} + 9C_2e^{9x}\right) - \frac{5}{4}\left(-\frac{1}{35}e^{2x} + C_1e^{-3x} + C_2e^{9x}\right) - \frac{1}{4}e^{2x}$
= $-\frac{8}{35}e^{2x} - 2C_1e^{-3x} + C_2e^{9x}.$

Important. Make sure you can explain why both of oursolutions are equivalent!

Example 126.

- (a) Determine the general solution to $y'_{1} = 5y_{1} + 4y_{2}, \ y'_{2} = 8y_{1} + y_{2}.$ Comment. In matrix form, with \bm{y} $=$ $\left[\begin{array}{c} y_1 \ y_2 \end{array} \right]$, this is \bm{y}' $=$ $\left[\begin{array}{cc} 5 & 4 \ 8 & 1 \end{array} \right]$ $\bm{y}.$
- (b) Solve the IVP $y_1' = 5y_1 + 4y_2$, $y_2' = 8y_1 + y_2$, $y_1(0) = 0$, $y_2(0) = 1$.

Solution.

- (a) Note that this is the homogeneous system corresponding to the previous problem. It therefore follows from our previous solution (the latter one) that $y_1\!=\!C_1e^{-3x}+C_2e^{9x}$ and $y_2\!=\!-2C_1e^{-3x}+C_2e^{9x}$ is the general solution of the homogeneous system.
- (b) We already have the general solutions y_1 , y_2 to the two DEs. We need to determine the (unique) values of C_1 and C_2 to match the initial conditions: $y_1(0) = C_1 + C_2 \stackrel{!}{=} 0, \ y_2(0) = -2C_1 + C_2 \stackrel{!}{=} 1$ 1 We solve these two equations and find $C_1\!=\!-\frac{1}{3}$ and $C_2\!=\!\frac{1}{3}.$ 3 . The unique solution to the IVP therefore is $y_1\!=\!-\frac{1}{3}e^{-3x}+\frac{1}{3}e^{9x}$ and $y_2\!=\!\frac{2}{3}e^{-3x}+\frac{1}{3}e^{9x}.$

35