Example 109. The motion of a mass on a spring under an external force is described by $my'' +$ $^{\prime\prime}$ + $4y = 3\cos(t) - \cos(2t) + 7\cos(3t)$. For which values of $m > 0$ does resonance occur?

 ${\sf Solution.}$ The characteristic roots of the homogeneous DE are $\pm i\sqrt{\frac{4}{m}}$ so that the natural frequency is $\sqrt{\frac{4}{m}}.$ The external frequencies are $\lambda = 1, 2, 3$. Hence, resonance occurs when $\sqrt{\frac{4}{m}} = \lambda$ for $\lambda \in \{1, 2, 3\}$. This is equivalent

to $m = \frac{4}{\lambda^2}$ so that this happens if $m = 4,~m = 1,~m = \frac{4}{9}.$ 9 .

Comment. The external force $3\cos(t) - \cos(2t) + 7\cos(3t)$ may look artifical. However, that is not the case! Indeed, essentially any 2π -periodic function can be written as an (infinite) combination of such cosine and sine terms. The resulting series are known as Fourier series.

External forces plus damping

In the presence of both damping $(d>0)$ and a periodic external force $(f(t))$, the motion $y(t)$ of a mass on a spring is described by the DE

$$
m y'' + dy' + ky = f(t).
$$

Solving the DE, we find that $y(t)$ splits into **transient motion** y_{tr} (with $y_{tr}(t) \rightarrow 0$ as $t \rightarrow \infty$) and steady periodic oscillations y_{sp} :

$$
y(t) = y_{tr} + y_{sp}.
$$

The following example spells this out.

Comment. Note that $y_{\rm SD}$ will correspond to the simplest particular solution, while $y_{\rm tr}$ corresponds to the solution of the corresponding homogeneous system (where we have no external force).

Example 110. A forced mechanical oscillator is described by $2y'' + 2y' + y = 10\sin(t)$. As $t \to \infty$, what are the period and the amplitude of the resulting steady periodic oscillations?

Solution. The characteristic roots of the homogeneous DE are $\frac{1}{4}(-2 \pm \sqrt{4-8}) =$ $\frac{1}{4}(-2\pm\sqrt{4-8})=-\frac{1}{2}\pm\frac{1}{2}i.$ Accordingly, the $\frac{1}{2}i$. Accordingly, the system without external force is underdamped (because of the $\pm i/2$ the solutions will involve oscillations).

The characteristic roots for the inhomogeneous part are $\pm i$ so that there must be a particular solution $y_p =$ $A\cos(t) + B\sin(t)$ with coefficients A, B that we need to determine by plugging into the DE. This results in $A = -4$ and $B = -2$ (do it!).

Hence, the general solution is $y(t) = -4\cos(t) - 2\sin(t) + e^{-t/2}\left(C_1\cos\left(\frac{t}{2}\right) + \frac{t}{2}\right)$ *y*sp $+ e^{-t/2} \Big(C_1 \cos\Big(\frac{t}{2}\Big) + C_2 \sin\Big(\frac{t}{2}\Big) \Big).$ $y_{\text{tr}} \rightarrow 0$ as $t \rightarrow \infty$. The period of $y_{\rm sp} \!=\! -4\mathrm{cos}(t)-2\mathrm{sin}(t)$ is 2π and the amplitude is $\sqrt{(-4)^2+(-2)^2} \!=\! \sqrt{20}.$.

 ${\sf Comment.}$ Using the polar coordinates $(-4,-2)$ $=\!\sqrt{20}(\cos\alpha,\sin\alpha)$ where $\alpha\!=\!\tan^{-1}(1/2)+\pi\!\approx\!3.605$, we can alternatively express the steady periodic oscillations as $y_{\rm sp} = -4\cos(t) - 2\sin(t) = \sqrt{20}(\cos(t-\alpha)).$

Example 111. A forced mechanical oscillator is described by $y'' + 5y' + 6y = 2\cos(3t)$. What are the (circular) frequency and the amplitude of the resulting steady periodic oscillations?

Solution. The characteristic roots of the homogeneous DE are $-2, -3$. Accordingly, the system without external force is overdamped (the solutions will not involve oscillations).

The characteristic roots for the inhomogeneous part are $\pm 3i$ so that there must be a particular solution $y_p =$ $A\cos(3t) + B\sin(3t)$ with coefficients A, B that we need to determine by plugging into the DE. To do so, we compute $y'_p = -3A\sin(3t) + 3B\cos(3t)$ as well as $y''_p = -9A\cos(3t) - 9B\sin(3t).$

$$
y_p'' + 5y_p' + 6y_p = (-9A\cos(3t) - 9B\sin(3t)) + 5(-3A\sin(3t) + 3B\cos(3t)) + 6(A\cos(3t) + B\sin(3t))
$$

= (-9A + 15B + 6A)\cos(3t) + (-9B - 15A + 6B)\sin(3t)
= 2\cos(3t)

This results in the two equations $-3A + 15B = 2$ and $-3B - 15A = 0$, which we solve to find $A = -\frac{1}{39}$ and $B = -\frac{5}{39}$ $B = \frac{5}{39}$. 39 .

The general solution is $y(t) = -\frac{1}{39} \cos(3t) + \frac{5}{39} \sin(3t) + \frac{C_1 e^{-2t} + C_2 e^{-3}}{2}$ $y_{\rm sp}$ *y*_{tr} $+ C_1 e^{-2t} + C_2 e^{-3t}$ $y_{\text{tr}} \rightarrow 0$ as $t \rightarrow \infty$.

The frequency of $y_{\rm sp} = -\frac{1}{39} {\rm cos}(3t) + \frac{5}{39} {\rm sin}(3t)$ is 3 and the amplitude is $\sqrt{\left(-\frac{1}{39}\right)^2 + \left(\frac{5}{39}\right)^2} = \sqrt{\frac{2}{117}}.$.

Example 112. Find the steady periodic solution to $y'' + 2y' + 5y = \cos(\lambda t)$. What is the amplitude of the steady periodic oscillations? For which λ is the amplitude maximal?

Solution. The characteristic roots of the homogeneous DE are $-1 \pm 2i$.

[Not really needed, because positive damping prevents duplication; can you see it?] Hence, $y_{\text{sp}} = A \cos(\lambda t) + B \sin(\lambda t)$ and to find A, B we need to plug into the DE.

Doing so, we find $A = \frac{5 - \lambda^2}{(5 - \lambda^2)(2 + 4\lambda^2)}$, $B = \frac{2\lambda}{(5 - \lambda^2)(2 + 4\lambda^2)}$ $\frac{5 - \lambda^2}{(5 - \lambda^2)^2 + 4\lambda^2}$, $B = \frac{2\lambda}{(5 - \lambda^2)^2 + 4\lambda^2}$. $(5 - \lambda^2)^2 + 4\lambda^2$.

Thus, the amplitude of $y_{\rm sp}$ is $r(\lambda) = \sqrt{A^2 + B^2} = \frac{1}{\sqrt{(r-1)^2(1-A^2)}}$.

The function $r(\lambda)$ is sketched to the right. It has a maximum at $\lambda =$ 0 1 $\sqrt{3}$ 3 4 $\sqrt{3}$ at which the amplitude is unusually large (well, here it is not very pronounced). We say that **practical resonance** occurs for $\lambda = \sqrt{3}$. . [For comparison, without damping, (pure) resonance occurs for $\lambda = \sqrt{5}$.] .]

Example 113. (extra) A car is going at constant speed v on a washboard road surface ("bumpy road'') with height profile $y(s)\!=\!a\cos\Bigl(\frac{2\pi s}{L}\Bigr)$. Assume that the car oscillates vertically as if on a spring (no dashpot). Describe the resulting oscillations.

Solution. With x as in the sketch, the spring is stretched by $x - y$. Hence, by Hooke's and Newton's laws, its motion is described by $mx'' = -k(x - y)$.

.

At constant speed, $s = vt$ and we obtain the DE $mx'' + kx = ky = ka \cos\left(\frac{2\pi vt}{L}\right)$, which is inhomogeneous linear with constant coefficients. Let's solve it.

The natural frequency is $\omega_0 \!=\! \sqrt{\frac{k}{m}}.$

The external frequency is $i\frac{2\pi v}{L}$ $=$ $\pm i\omega$. ω $=$ $\frac{2\pi v}{L}$. *L* .

- Case 1: $\omega \neq \omega_0$. Then a particular solution is $x_p = b_1 \cos(\omega t) + b_2 \sin(\omega t) =$ $A \cos(\omega t - \alpha)$ for unique values of b_1, b_2 (which we do not compute here).
The general solution is of the form $x = x_p + C_1 \cos(\omega_0 t) + C_2 \sin(\omega_0 t)$.
- **Case 2:** $\omega = \omega_0$. Then a particular solution is $x_p = t[b_1 \cos(\omega t) + b_2 \sin(\omega t)] =$ $At \cos(\omega t - \alpha)$ for unique values of b_1, b_2 (which we do not compute). Note that the amplitude in x_p increases without bound; the same is true for the general solution $x = x_p + C_1 \cos(\omega_0 t) + C_2 \sin(\omega_0 t)$. This phenomenon is resonance; it occurs if an external frequency matches a natural frequency.

The first "car" is assumed to be in equilibrium.