
Notes for Lecture 20 Mon, 10/14/2024

Example 91. Consider the DE y 00+4y 0+4y=2e3x¡ 5e¡2x.

(a) What is the simplest form (with undetermined coefficients) of a particular solution?

(b) Determine a particular solution using our results from Examples 89 and 90.

(c) Determine the general solution.

Solution.

(a) Note that D2+4D+4= (D+2)2.

homogeneous DE inhomogeneous part
characteristic roots ¡2;¡2 3;¡2

solutions e¡2x; xe¡2x e3x; x2e¡2x

Hence, there has to be a particular solution of the form yp=Ae3x+Bx2e¡2x.
To find the (unique) values of A and B, we can plug into the DE. Alternatively, we can break the problem
into two pieces as illustrated in the next part.

(b) Write the DE as Ly=2e3x¡ 5e¡2x where L=D2+4D+4. In Example 89 we found that y1=
1

25 e
3x

satisfies Ly1= e3x. Also, in Example 90 we found that y2=
7

2
x2e¡2x satisfies Ly2=7e¡2x.

By linearity, it follows that L(Ay1+By2)=ALy1+BLy2=Ae3x+7Be¡2x.
To get a particular solution yp of our DE, we need A=2 and 7B=¡5.

Hence, yp=2y1¡ 5

7
y2=

2

25
e3x¡ 5

2
x2e¡2x.

Comment. Of course, if we hadn't previously solved Examples 89 and 90, we could have plugged the result
from the first part into the DE to determine the coefficients A and B. On the other hand, breaking the
inhomogeneous part (2e3x¡ 5e¡2x) up into pieces (here, e3x and e¡2x) can help keep things organized,
especially when working by hand.

(c) The general solution is 2

25
e3x¡ 5

2
x2e¡2x+(C1+C2x)e

2x.

Example 92. Consider the DE y 00¡ 2y 0+ y=5sin(3x).

(a) What is the simplest form (with undetermined coefficients) of a particular solution?

(b) Determine a particular solution.

(c) Determine the general solution.

Solution. Note that D2¡ 2D+1= (D¡ 1)2.
homogeneous DE inhomogeneous part

characteristic roots 1; 1 �3i
solutions ex; xex cos(3x); sin(3x)

(a) This tells us that there exists a particular solution of the form yp=A cos(3x)+B sin(3x).

(b) To find the values of A and B, we plug into the DE.

yp
0 =¡3A sin(3x)+ 3B cos(3x)

yp
00=¡9A cos(3x)¡ 9B sin(3x)

yp
00¡ 2yp0 + yp=(¡8A¡ 6B)cos(3x)+ (6A¡ 8B)sin(3x)=

!
5sin(3x)

Equating the coefficients of cos(x), sin(x), we obtain the two equations¡8A¡6B=0 and 6A¡8B=5.

Solving these, we find A= 3

10
, B=¡2

5
. Accordingly, a particular solution is yp=

3

10
cos(3x)¡ 2

5
sin(3x).

(c) The general solution is y(x)= 3

10
cos(3x)¡ 2

5
sin(3x)+ (C1+C2x)e

x.
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Example 93. Consider the DE y 00¡ 2y 0+ y = 5e2xsin(3x) + 7xex. What is the simplest form
(with undetermined coefficients) of a particular solution?

Solution. SinceD2¡2D+1=(D¡1)2, the characteristic roots are 1;1. The roots for the inhomogeneous part
are 2� 3i; 1; 1. Hence, there has to be a particular solution of the form yp=Ae2xcos(3x) +Be2xsin(3x) +
Cx2ex+Dx3ex.
(We can then plug into the DE to determine the (unique) values of the coefficients A;B;C;D.)

Example 94. (homework)What is the shape of a particular solution of y 00+4y 0+4y=xcos(x)?
Solution. The characteristic roots are ¡2;¡2. The roots for the inhomogeneous part are �i;�i. Hence, there
has to be a particular solution of the form yp=(C1+C2x)cos(x)+ (C3+C4x)sin(x).

Continuing to find a particular solution. To find the value of the Cj's, we plug into the DE.
yp
0 =(C2+C3+C4x)cos(x)+ (C4¡C1¡C2x)sin(x)
yp
00=(2C4¡C1¡C2x)cos(x)+ (¡2C2¡C3¡C4x)sin(x)
yp
00+4yp

0 +4yp=(3C1+4C2+4C3+2C4+(3C2+4C4)x)cos(x)

+ (¡4C1¡ 2C2+3C3+4C4+(¡4C2+3C4)x)sin(x)=
!
x cos(x).

Equating the coefficients of cos(x), xcos(x), sin(x), xsin(x), we get the equations 3C1+4C2+4C3+2C4=0,
3C2+4C4=1, ¡4C1¡ 2C2+3C3+4C4=0, ¡4C2+3C4=0.

Solving (this is tedious!), we find C1=¡ 4

125
, C2=

3

25
, C3=¡ 22

125
, C4=

4

25
.

Hence, yp=
�
¡ 4

125
+

3

25
x
�
cos(x)+

�
¡ 22

125
+

4

25
x
�
sin(x).

Example 95. (homework) What is the shape of a particular solution of y 00 + 4y 0 + 4y =
4e3xsin(2x)¡x sin(x).
Solution. The characteristic roots are ¡2;¡2. The roots for the inhomogeneous part roots are 3� 2i;�i;�i.
Hence, there has to be a particular solution of the form
yp=C1e

3xcos(2x)+C2e
3xsin(2x)+ (C3+C4x)cos(x)+ (C5+C6x)sin(x).

Continuing to find a particular solution. To find the values of C1; :::; C6, we plug into the DE. But this final
step is so boring that we don't go through it here. Computers (currently?) cannot afford to be as selective; mine
obediently calculated: yp=¡

4

841e
3x(20cos(2x)¡ 21sin(2x))+ 1

125 ((¡22+ 20x)cos(x)+ (4¡ 15x)sin(x))
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