
Notes for Lecture 18 Mon, 10/7/2024

Review. A homogeneous linear DE with constant coefficients is of the form p(D)y = 0, where
p(D) is the characteristic polynomial polynomial. For each characteristic root r of multiplicity k,
we get the k solutions xjerx for j=0; 1; :::; k¡ 1.

Example 75. (review) Find the general solution of y 000+2y 00+ y 0=0.
Solution. The characteristic polynomial p(D)=D(D+1)2 has roots 0; 1; 1.
Hence, the general solution is A+(B+Cx)ex.

Example 76. Determine the general solution of y 000¡ 3y 00+3y 0¡ y=0.
Solution. The characteristic polynomial p(D)=D3¡ 3D2+3D¡ 1= (D¡ 1)3 has roots 1; 1; 1.
By Theorem 72, the general solution is y(x)= (C1+C2x+C3x

2)ex.
Comment. The coefficients 1; 2; 1 and 1; 3; 3; 1 in (D+1)2 and (D+1)3 are known as binomial coefficients.
They can be arranged as rows in Pascal's triangle where the next row would be 1; 4; 6; 4; 1.

Example 77. Determine the general solution of y 000¡ y 00¡ 5y 0¡ 3y=0.
Solution. The characteristic polynomial p(D)=D3¡D2¡ 5D¡ 3= (D¡ 3)(D+1)2 has roots 3;¡1;¡1.
Hence, the general solution is y(x)=C1e

3x+(C2+C3x)e
¡x.

Example 78. (homework) Solve the IVP y 000=8y 00¡ 16y 0 with y(0)=1, y 0(0)=4, y 00(0)=0.
Solution. The characteristic polynomial p(D)=D3¡ 8D2+ 16D=D(D¡ 4)2 has roots 0; 4; 4.
By Theorem 72, the general solution is y(x)=C1+(C2+C3x)e

4x.
Using y0(x)= (4C2+C3+4C3x)e

4x and y 00(x)=4(4C2+2C3+4C3x)e4x, the initial conditions result in the
equations C1+C2=1, 4C2+C3=4, 16C2+8C3=0.
Solving these (start with the last two equations) we find C1=¡1, C2=2, C3=¡4.
Hence the unique solution to the IVP is y(x)=¡1+ (2¡ 4x)e4x.
Important comment. Check that y(x) indeed solves the IVP.

Example 79. Determine the general solution of y(6)=3y(5)¡ 4y 000.
Solution. This DE is of the form p(D) y=0 with p(D)=D6¡ 3D5+4D3=D3(D¡ 2)2(D+1).
The characteristic roots are 2; 2; 0; 0; 0;¡1.
By Theorem 72, the general solution is y(x)= (C1+C2x)e

2x+C3+C4x+C5x
2+C6e

¡x.

Example 80. Consider the function y(x)=3xe¡2x+7ex. Determine a homogeneous linear DE
with constant coefficients of which y(x) is a solution.

Solution. In order for y(x) to be a solution of p(D)y=0, the characteristic roots must include ¡2;¡2; 1.
The simplest choice for p(D) thus is p(D)= (D+2)2(D¡ 1)=D3+3D2¡ 4.
Accordingly, y(x) is a solution of y 000+3y 00¡ 4y=0.

Example 81. Consider the function y(x) = 3xe¡2x + 7. Determine a homogeneous linear DE
with constant coefficients of which y(x) is a solution.

Solution. In order for y(x) to be a solution of p(D)y=0, the characteristic roots must include ¡2;¡2; 0.
The simplest choice for p(D) thus is p(D)= (D+2)2D=D3+4D2+4D.
Accordingly, y(x) is a solution of y 000+4y 00+4y0=0.
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Real form of complex solutions

Let's recall some basic facts about complex numbers:

� Every complex number can be written as z=x+ iy with real x; y.

� Here, the imaginary unit i is characterized by solving x2=¡1.
Important observation. The same equation is solved by ¡i. This means that, algebraically, we cannot
distinguish between +i and ¡i.

� The conjugate of z=x+ iy is z�=x¡ iy.
Important comment. Since we cannot algebraically distinguish between �i, we also cannot distinguish
between z and z�. That's the reason why, in problems involving only real numbers, if a complex number
z=x+ iy shows up, then its conjugate z�=x¡ iy has to show up in the same manner. With that in
mind, have another look at the examples below.

� The real part of z=x+ iy is x and we write Re(z)=x.

Likewise the imaginary part is Im(z)= y.

Observe that Re(z)= 1

2
(z+ z�) as well as Im(z)= 1

2i
(z¡ z�).

Theorem 82. (Euler's identity) eix= cos(x)+ i sin(x)

Proof. Observe that both sides are the (unique) solution to the IVP y 0= iy, y(0)= 1.
[Check that by computing the derivatives and verifying the initial condition! As we did in class.] �

On lots of T-shirts. In particular, with x = �, we get e�i=¡1 or ei� + 1 = 0 (which connects the five
fundamental constants).

Comment. It follows that cos(x)=Re(eix)= 1

2
(eix+ e¡ix) and sin(x)= Im(eix)= 1

2i
(eix¡ e¡ix).

Example 83. Determine the general solution of y 00+ y=0.
Solution. (complex numbers in general solution) The characteristic polynomial is D2+1 which has no roots
over the reals. Over the complex numbers, by definition, the roots are i and ¡i.
So the general solution is y(x)=C1 e

ix+C2 e
¡ix.

Solution. (real general solution) On the other hand, we easily check that y1= cos(x) and y2= sin(x) are two
solutions. Hence, the general solution can also be written as y(x)=D1 cos(x)+D2 sin(x).

Important comment. That we have these two different representations is a consequence of Euler's identity
(Theorem 82) by which e�ix= cos(x)� i sin(x).
On the other hand, cos(x)= 1

2
(eix+ e¡ix) and sin(x)= 1

2i
(eix¡ e¡ix).

[Recall that the first formula is an instance of Re(z)= 1

2
(z+ z�) and the second of Im(z)= 1

2i
(z¡ z�).]

Example 84. Determine the general solution of y 00¡ 4y 0+ 13y=0 using only real numbers.
Solution. The characteristic polynomial p(D)=D2¡ 4D+ 13 has roots 2+3i; 2¡ 3i.

[We can use the quadratic formula to find these roots as 4� 42¡ 4 � 13
p

2
=
4� ¡36

p

2
=
4� 6i
2

=2� 3i.]

Hence, the general solution in real form is y(x)=C1e
2xcos(3x)+C2e

2xsin(3x).

Note. e(2�3i)x= e2xe�3ix= e2x(cos(3x)� i sin(3x))
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Review. A linear DE of order n is of the form

y(n)+Pn¡1(x) y(n¡1)+ :::+P1(x)y 0+P0(x)y= f(x):

The general solution of linear DE always takes the form

y(x)= yp(x)+C1y1(x)+ :::+Cn yn(x);

where yp is any solution (called a particular solution) and y1; y2; :::; yn are solutions to the
corresponding homogeneous linear DE.

� In terms of D=
d

dx
, the DE becomes: Ly= f(x) with L=Dn+Pn¡1(x)D

n¡1+ :::+P1(x)D+P0(x).

� The inclusion of the f(x) term makes Ly = f(x) an inhomogeneous linear DE. The corresponding
homogeneous DE is Ly=0 (note that the zero function y(x)= 0 is a solution of Ly=0).

� L is called a linear differential operator.

� L(C1y1+C1y2)=C1Ly1+C2Ly2 (linearity)
Comment. If you are familiar with linear algebra, think of L replaced with a matrix A and y1; y2
replaced with vectors v1;v2. In that case, the same linearity property holds.

� So, if y1 solves Ly= f(x), and y2 solves Ly= g(x), then C1y1+C2y2 solves C1f(x)+C2 g(x).

� In particular, if y1 and y2 solve the homogeneous DE, then so does any linear combination
C1y1+C2y2. This explains why, for any homogeneous linear DE of order n, there are n solutions
y1; y2; :::; yn such that the general solution is y(x) = C1y1(x) + ::: + Cn yn(x). Moreover,
in that case, if we have a particular solution yp of the inhomogeneous DE Ly = f(x), then
yp+C1y1+ :::+Cn yn is the general solution of Ly= f(x).

Example 85. (preview) Determine the general solution of y 00+4y= 12x. Hint : 3x is a solution.

Solution. Here, p(D)=D2+4. Because of the hint, we know that a particular solution is yp=3x.
The homogeneous DE p(D)y=0 has solutions y1= cos(2x) and y2= sin(2x). [Make sure this is clear!]

Therefore, the general solution to the original DE is yp+C1 y1+C2y2=3x+C1cos(2x)+C2sin(2x).

Just to make sure. The DE in operator notation is Ly= f(x) with L=D2+4 and f(x)= 12x.
Next. How to find the particular solution yp=3x ourselves.
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